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Abstract: The global COVID-19 pandemic has presented unprecedented challenges, notably the limited availability 

of test kits, hindering timely and accurate disease diagnosis. Rapid identification of pneumonia, a common COVID-

19 consequence, is crucial for effective management. This study focuses on COVID-19 classification from Chest X-

ray images, employing an innovative approach: adapting the Xception model into a U-Net architecture via the 

Segmentation_Models package. Leveraging deep learning and image segmentation, the U-Net architecture, a CNN 

variant, proves ideal for this task, particularly after tailoring its output layer for classification. By utilizing the Xception 

model, we aim to enhance COVID-19 classification accuracy and efficiency. The results demonstrate promising 

autonomous identification of COVID-19 cases, offering valuable support to healthcare professionals. The fusion of 

medical imaging data with advanced neural network architectures highlights avenues for improving diagnostic 

accuracy during the pandemic. Notably, precision, recall, and F1 scores for each class are reported: Normal 

(Precision = 0.98, Recall = 0.9608, F1 Score = 0.9704), Pneumonia (Precision = 0.9579, Recall = 0.9579, F1 Score 

= 0.9579), and COVID-19 (Precision = 0.96, Recall = 0.9796, F1 Score = 0.9698). These findings underscore the 

effectiveness of our approach in accurately classifying COVID-19 cases from chest X-ray images, offering promising 

avenues for enhancing diagnostic capabilities during the pandemic. 

Keywords: Chest X-rays, COVID-19, Xception model, Segmentation Models, U-Net 

 

1. Introduction 

The COVID-19 pandemic, originating in late 

2019, has presented unparalleled global challenges to 

healthcare systems and medical professionals [1]. Amid 

the multifaceted approaches employed for the detection 

and assessment of this contagious disease, medical 

imaging, particularly chest X-ray imagery, has gained 

substantial prominence [2]. This research study focuses 

on the important undertaking of classifying COVID-19 

Chest X-rays. The study utilizes advanced deep-learning 

techniques to accomplish this assignment. 

A central innovation in our study lies in the 

adaptation of the U-Net architecture [3]. Originally 

conceived for semantic segmentation tasks, U-Net is 

reimagined and tailored for the classification of chest X-

ray images. This adaptation involves a fundamental 

transformation of the U-Net's output layer to yield class 

predictions. By enabling the U-Net to transition from its 

conventional segmentation role to one of classification 

[4], The system possesses the capability to effectively 

differentiate COVID-19 instances from other medical 

disorders, hence enhancing its applicability in the field of 

medical imaging analysis. 

To facilitate this remarkable adaptation, the 

Segmentation_Models library [5, 6], which offers a 

powerful toolkit for model architecture modification, is 

strategically employed. Through this approach, not only 

are the inherent strengths of U-Net in feature extraction 

and localization capitalized upon but its capabilities are 

also extended to address the urgent requirement for 

COVID-19 classification. 

The proposed research encompasses three 

primary categories of chest X-ray images: normal cases, 

pneumonia, and COVID-19. The accurate categorization 

of these distinct types of X-rays carries profound 

implications for clinical practice. It enables healthcare 

professionals to swiftly identify COVID-19 cases, and 

make well-informed decisions regarding patient care, 

including isolation, treatment, and monitoring. 

By combining state-of-the-art neural network 

architectures, such as the adapted U-Net [7], with the 

wealth of information embedded in chest X-ray images, 

the proposed study aspires to contribute to the 

development of a reliable and efficient tool for assisting 

healthcare practitioners in the ongoing battle against 

COVID-19. This research underscores the pivotal role of 

medical imaging in pandemic response, emphasizing 

the potential of deep learning to augment the precision 

and expediency of diagnosis within the complex 

landscape of this global health crisis. As the intricacies 

of the methodology and findings are further explored, a 
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journey is undertaken that holds great promise for the 

enhancement of understanding and management of 

COVID-19 through the lens of advanced artificial 

intelligence. 

Assessing the COVID-19 disease based on 

images of the chest X-ray is a formidable challenge [8], 

even for seasoned radiologists. The complexities and 

nuances of this task make it ripe for assistance through 

computational means, offering valuable support to 

medical professionals. Several notable studies have 

delved into the realm of COVID-19 virus assessment, 

shedding light on the potential of computer-aided 

diagnosis. 

Moreover, recent advancements in medical 

imaging research have demonstrated the potential of 

integrating multi-modal techniques for enhanced 

diagnostic accuracy. For instance, studies such as the 

"Multi-modal medical image fusion framework using co-

occurrence filter and local extrema in NSST domain" and 

"An end-to-end content-aware generative adversarial 

network-based method for multimodal medical image 

fusion" have shown promising results in fusing 

information from diverse imaging modalities to improve 

diagnostic outcomes [9, 10]. Additionally, the "TSJNet: A 

Multi-modality Target and Semantic Awareness Joint-

driven Image Fusion Network" presents an innovative 

approach that integrates target and semantic awareness 

into the image fusion process, further enhancing the 

interpretability of fused images [11]. These 

advancements underscore the potential of leveraging 

multi-modal medical imaging techniques to augment the 

diagnostic capabilities of deep-learning models, aligning 

closely with the objectives of our study. 

 

2. Related work 

Over the past year, the scientific community has 

witnessed a surge in publications exploring the 

intersection of COVID-19 and deep learning. While this 

body of work has been prolific, it predominantly centers 

on disease detection rather than the nuanced 

assessment of disease [12]. Many researchers have 

delved into the concept of lung or lobe segmentation as 

a diagnostic tool. For instance, Shan et al. [13], 

developed a deep learning-based method for 

automatically segmenting and quantifying COVID-19 

infection regions in chest CT scans. Their system 

achieved a high Dice similarity coefficient of 91.6% and 

demonstrated potential for severity prediction with an 

accuracy of 73.4%. This research addresses the need 

for automated tools in COVID-19 diagnosis using chest 

CT images. Amyar et al. [14] present CovXNet, a deep-

learning network. It is trained initially on normal and 

pneumonia cases and then fine-tuned with COVID-19 

data to address data scarcity. The achieved detection 

accuracies are 97.4% for 96.9% for COVID/Viral, 94.7% 

for COVID/Bacterial, COVID/Normal, and 90.2% for 

multiclass COVID/normal/Viral/Bacterial pneumonia, 

demonstrating its potential in aiding COVID-19 diagnosis 

during the pandemic.  

Despite advances in deep learning, its 

sensitivity for COVID-19 detection is suboptimal, with 

RT-PCR tests remaining the gold standard [15]. In 

contrast to the typically subjective and qualitative ratings 

offered by radiologists, deep learning-based illness 

assessment provides greater objectivity and precision. 

Researchers have explored the possibility of applying 

deep learning techniques to determine the COVID-19 

disease using chest X-rays. 

He et al. [16] developed a synergistic learning 

strategy. When applied to a Computed Tomography 

(CT) scans dataset consisting of 666 human chests, their 

approach obtained a remarkable accuracy of 98.5%. 

Mijwil and Maad [17] previously used two deep 

convolutional neural network (DCNN) classifiers, 

Inception-v2 and VGG-16, to detect COVID-19 using a 

Kaggle dataset (COVID-19 Radiography Database). 

They examined chest X-rays of COVID-19-positive and 

healthy people. With an accuracy of 97%, the Inception-

v2 classifier outperformed the VGG-16 classifier, which 

had 93%. 

Khanday et al. [18], in this work, data labeling 

was done manually using propaganda identification 

methods, and relevant features were selected using 

hybrid feature engineering. Adaboost achieved 98.7% 

accuracy in binary classification using ensemble 

machine learning classifiers. The main learning 

approach was Adaboost, which adjusts weights to 

improve weak learning algorithms. Tang et al. [19] 

showed that artificial intelligence methods that used 

quantitative characteristics extracted from CT lung 

scans were able to tell the difference between COVID-

19 patients with severe and non-severe cases with an 

average precision of 87.5% based on a collection of 176 

CT scans. 

Meanwhile, Xiao et al. [20] Xiao et al. developed 

an AI tool using CT imaging to predict COVID-19 disease 

progression. Their deep learning model achieved an 

impressive 97.4% accuracy in training and 81.9% in 

testing, with AUCs of 0.987 and 0.892. In patients initially 

classified as non-severe, the model achieved AUCs of 

0.955 and 0.923, with corresponding accuracies of 

97.0% and 81.6%. This AI-based approach holds 

promise for guiding clinical treatment and early 

intervention in COVID-19 patients based on CT scans. 

Yu et al. [21] employed deep learning with 729 CT scans 

to rapidly identify the COVID-19 virus. They used four 

pre-trained deep models and achieved a 95.20% 

accuracy with DenseNet-201 and cubic SVM for tenfold 

cross-validation, indicating a promising method for 

efficient and reliable severity assessment.  

Using five pre-trained CNN-based models 

(ResNet50-101-152, Inception-ResNetV2, and 

Inception-ResNetV3), Narin et al. [22] investigate the 
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identification of coronavirus pneumonia in chest X-ray 

radiography. The researchers used five-fold cross-

validation to examine the accuracy of three binary 

classifications across four groups (normal, COVID-19, 

bacterial pneumonia, and viral pneumonia). Particularly 

impressive is the ResNet50 model's outperformance of 

the competition on all three datasets, with 96.1% 

accuracy for Data set-one, 99.5% accuracy for Data set-

two, and 99.7% accuracy for Data set-three. Salih et al. 

[23], investigate the benchmarking of COVID-19 

machine learning methods, framed as a multi-criteria 

decision-making (MCDM) problem. Notably, the Fuzzy 

Decision by Opinion Score Method, introduced in 2020, 

has proven effective in addressing complex issues 

arising from conflicting criteria in MCDM. The research 

consists of two key stages: the first involves applying 

eight machine learning methods to chest X-ray (CXR) 

images to create a novel decision matrix, and the second 

employs the FDOSM to resolve multiple criteria 

decision-making challenges.  

Nasiri and Alavi [24] introduced a new deep-

learning architecture to assist radiologists in diagnosing 

COVID-19 cases from chest X-ray images, aiming to 

overcome the drawbacks of Reverse Transcriptase-

Polymerase Chain Reaction (RT-PCR). By utilizing a 

preexisting network called DenseNet169, they utilized 

analysis of variance (ANOVA) to choose the most 

relevant features, thereby improving accuracy and 

reducing computational complexity. The eXtreme 

Gradient Boosting (XGBoost) technique was utilized for 

classification, and the assessment was carried out on 

the ChestX-ray8 dataset. The results exhibited a 

significant level of precision, with a 98.72% accuracy 

rate for the classification of two classes (COVID-19 and 

No-findings), and a 92% accuracy rate for the 

classification of several classes (COVID-19, No-findings, 

and Pneumonia). The precision, recall, and specificity 

rates exhibited remarkable levels of performance, 

demonstrating the method's usefulness in both 

categorization scenarios. The comparison with existing 

approaches demonstrated the framework's higher 

performance, highlighting its potential usefulness for 

radiologists in diagnosing COVID-19. This work 

enhances the progress of deep learning applications in 

the analysis of medical images, providing useful 

knowledge on ways to extract important features and 

classify them. These approaches can enhance the 

accuracy of diagnoses and assist healthcare 

professionals in providing prompt care to patients. 

Furthermore, a recent study conducted by Prita 

Patila and Vaibhav Narawade [25], highlights the 

significance of data balance, data augmentation, and 

segmentation in the clinical domain. These techniques 

are crucial for enhancing the accuracy of respiratory 

ailment detection through the application of machine 

learning methods. Their proposed concept is to improve 

the balance of image data by utilizing data augmentation 

and edge detection techniques. Additionally, they seek 

to enhance the effectiveness of radiological image 

preprocessing by accurately identifying areas of interest 

(ROI). Patila and Narawade employed a wide range of 

datasets, including online repositories like Kaggle and 

real-time radiological pictures acquired from nearby local 

hospitals. To tackle the issue of imbalanced data 

distribution, the researchers implemented the 

RESP_DATA_BALANCE methodology for dataset 

creation, to attain improved balance in picture data. In 

addition, their study presented the RDD_ROI 

(Respiratory Disease Detection Region of Interest) 

algorithm, which integrates sophisticated image feature 

extraction methods utilizing Gray-Level Co-occurrence 

Matrix (GLCM) and unsupervised K-means clustering for 

segmentation. This technique is essential in finding the 

specific areas of interest for detecting respiratory 

disorders in medical imaging. Patila and Narawade 

introduced a specialized 28-layer Deep Neural Network 

(RDD_DNN) to aid in the identification and early 

detection of respiratory illnesses. This deep neural 

network (DNN) architecture is specifically tailored for 

training, testing, and validating models used for 

detecting respiratory diseases. Their experimental 

findings center on assessing the performance attributes 

of different techniques for data augmentation, edge 

detection, and preprocessing. The objective is to 

enhance the accuracy and efficiency of diagnosing 

respiratory diseases, ultimately leading to early 

intervention and better patient outcomes. 

These pioneering studies collectively 

underscore the potential of deep learning in enhancing 

the precision of COVID-19 disease, offering a pathway 

toward more objective and data-driven diagnostic 

practices in the healthcare domain. 

 

3. Dataset 

Given the novelty of COVID-19 as a recently 

identified coronavirus, the acquisition of suitable 

datasets for research investigations related to COVID-

19 presents a substantial challenge. In the context of the 

proposed research methodology, two distinct datasets 

were employed. The first dataset comprises a diverse 

collection of radiographic images sourced from the 

Guangzhou Medical Center in China [26]. This image set 

encompasses normal X-rays, X-rays depicting 

pneumonia resulting from viruses other than COVID-19, 

and X-rays displaying bacterial pneumonia. The second 

dataset consists of X-rays captured from a range of 

COVID-19 patients, meticulously gathered from Sylhet 

Medical College in Bangladesh and subsequently 

subjected to rigorous evaluation by a panel of highly 

qualified radiologists [27]. As illustrated in Figure (1), all 

COVID-19 X-ray images amalgamated with an 

equivalent number of normal, and bacterial pneumonia 

X-rays (305 X-rays in each category), thereby creating a 

more concise and balanced database.  
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To train a U-Net model effectively for multi-class 

segmentation involving three categories (normal, 

pneumonia, and COVID-19) while utilizing an input 

shape of 224x224, meticulous preprocessing of input 

data, one-hot encoding of labels, and the application of 

data augmentation techniques must be undertaken. 

 

3.1. Data Preprocessing 

Image Resizing: The resizing of all input 

images to the desired dimensions of 224x224 pixels is 

carried out. This can be accomplished through the 

utilization of libraries such as OpenCV [28]. 

Normalization: Normalization is performed on 

the pixel values of the resized images to bring them 

within a uniform range, typically [0, 1]. This normalization 

ensures improved convergence during model training 

[29]. 

One-Hot Encoding: Given the presence of 

three distinct classes (normal, pneumonia, and COVID-

19), the labels must undergo one-hot encoding. This 

process involves the conversion of each label into a 

binary vector in which each element denotes the 

presence or absence of a specific class [30]. The 

following steps are involved: 

a. The assignment of a unique numerical label to 

each class (e.g., 0 for normal, 1 for pneumonia, 

and 2 for COVID-19). 

b. Creation of a mask for each image, possessing 

the same dimensions as the image itself, where 

each pixel is substituted with the corresponding 

class label. 

c. Conversion of these classes into one-hot 

encoded tensors. This transformation can be 

accomplished using tf.one_hot in TensorFlow 

Data Augmentation: Data augmentation plays 

a pivotal role in enhancing model generalization. It 

entails the generation of diversified training data by 

applying random transformations to the images [31]. In 

this context, the following augmentation techniques 

should be considered 

a. Rotation: Images are randomly rotated by a 

minor angle (-5 to 5 degrees) to enhance the model's 

orientation invariance. 

b. Horizontal Flip: Horizontal flips are applied 

with a certain probability (0.5) to simulate mirror images. 

It is essential to adjust the labels correspondingly when 

images are flipped horizontally. 

c. Translation: Images are shifted both 

horizontally and vertically by a fraction of the image size 

(10% of 128 pixels). This introduces variability in object 

placement. 

d. Brightness and Contrast Adjustments: 

Random adjustments are made to the brightness and 

contrast of images to simulate diverse lighting 

conditions. 

e. Zoom: Random zooming (inward or outward) 

is applied to replicate variations in object scale. 

f. Gaussian Noise: A minor quantity of 

Gaussian noise is introduced into the images to bolster 

robustness. 

It is imperative to ensure that these 

augmentation techniques are applied consistently to 

both the input images. This approach guarantees 

alignment and coherence throughout the data 

augmentation process. 

By meticulously adhering to these steps for data 

preprocessing, one-hot encoding, and data 

augmentation, the U-Net model can be effectively 

trained for multi-class segmentation tasks, incorporating 

the Xception backbone with an input shape of 224x224. 

These practices serve to enhance the model's aptitude 

for generalization and its capacity to accurately segment 

normal, pneumonia, and COVID-19 regions within 

medical images. Figure (1) shows a sample of the used 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Displays some X-ray images depicting normal, pneumonia, and COVID-19 conditions [27] 
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4. Modelling 

4.1 Xception Model 

In the realm of deep learning and computer 

vision, the Xception model stands out as a game-

changer. Developed in 2016 by François Chollet, the 

creator of Keras, Xception has redefined image 

recognition with its extreme depth and computational 

efficiency [32]. 

Xception, short for Extreme Inception, was 

introduced to overcome limitations in previous models, 

especially Inception. Its innovation lies in depth-wise 

separable convolutions, splitting convolution into depth-

wise and pointwise stages. This reduces computational 

complexity while preserving accuracy. 

Xception's core concept is depth-wise separable 

convolutions, which streamline operations and enhance 

efficiency. With 36 convolutional layers, Xception learns 

intricate hierarchical features, making it exceptionally 

powerful. Despite its depth, it remains efficient, making it 

suitable for various devices. Moreover, Xception 

consistently leads on benchmark datasets like ImageNet 

[33].  

Xception's versatility finds applications in image 

classification, where it achieves high accuracy. It also 

excels in object detection models, improving accuracy in 

these tasks. Xception is equally adept at semantic 

segmentation, accurately segmenting objects within 

images. Its application extends to medical imaging, 

where it aids disease diagnosis from medical images. 

 

4. 2 Segmentation Models 

Segmentation Models is an open-source deep-

learning library specializing in image segmentation [6, 

34]. It offers pre-trained models like UNet, LinkNet, 

PSPNet, and FPN, making transfer learning easy. One 

of its notable strengths lies in its support for a variety of 

powerful backbones, including popular choices like 

Xception, ResNeXt, EfficientNet, and more. This 

flexibility allows users to select a backbone architecture 

that precisely suits their project requirements. 

One of the remarkable features of Segmentation 

Models is its ability to convert these diverse backbones 

into U-Net-like structures. This conversion involves 

adapting the encoder-decoder architecture commonly 

found in U-Net for the specific task of image 

segmentation. The library provides tools and utilities to 

seamlessly integrate these backbones into the U-Net 

framework, simplifying the implementation of complex 

segmentation tasks. 

With rich documentation and compatibility with 

TensorFlow and PyTorch, it's user-friendly and 

adaptable to different datasets. Supported by a 

community, Segmentation Models simplifies image 

segmentation for researchers and developers, staying 

updated with the latest advancements in computer 

vision. This capability to convert diverse backbones into 

U-Net structures makes it a valuable resource for those 

seeking versatile and high-performing solutions for 

image segmentation.  

 

4.3 Proposed U-net architecture using Xception 

The proposed U-Net architecture leveraging the 

Xception model entails a detailed approach to effectively 

capture fine-grained details and features in images for 

multi-class segmentation tasks. This endeavor involves 

integrating the feature extraction capabilities of the 

Xception backbone into the U-Net framework, aiming to 

achieve pixel-wise classification across three distinct 

classes within an image. This task is commonly 

encountered in various domains such as medical image 

analysis and satellite imagery. To facilitate this 

integration, the Segmentation_Models library is 

employed, which offers a range of tools and utilities for 

simplifying the creation of complex segmentation 

architectures [35]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The Xception's new design as U-net after being Segmentation_Models' backbone 
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Figure (2) illustrates the transformation of the 

Xception model into the U-Net architecture, serving as a 

foundational backbone within the Segmentation_Models 

framework. This adaptation enables the resultant model 

to differentiate between the three distinct classes within 

input images. By leveraging the Xception model's 

capabilities within the U-Net architecture, the proposed 

model exhibits enhanced performance in capturing 

intricate image features and patterns, thus enabling 

potential applications in diverse fields beyond medical 

diagnosis, such as scene understanding and object 

detection [32]. 

The construction of the U-Net architecture using 

the Xception backbone involves several key steps. 

Initially, the Xception model is imported and integrated 

into the U-Net framework, ensuring compatibility and 

seamless interaction between the two components. 

Next, the architecture is configured to accommodate the 

specific requirements of multi-class segmentation tasks, 

including input and output dimensions, as well as the 

number of classes to be classified. 

Furthermore, fine-tuning and optimization 

techniques are applied to tailor the model to the target 

segmentation task, ensuring optimal performance and 

accuracy. This may involve adjusting hyperparameters, 

such as learning rate and batch size, as well as 

incorporating regularization techniques to prevent 

overfitting. Additionally, extensive experimentation and 

validation are conducted to evaluate the model's 

performance across various datasets and segmentation 

scenarios [7]. 

The proposed U-Net architecture leveraging the 

Xception backbone represents a comprehensive 

approach to image segmentation, offering advanced 

capabilities for capturing and analyzing complex image 

features. By combining state-of-the-art deep learning 

techniques with versatile model architectures, this 

methodology aims to provide researchers and 

practitioners with a robust framework for tackling 

challenging segmentation tasks in diverse application 

domains. 

 

5. Training the Model 

Image segmentation plays a pivotal role in the 

realm of computer vision, finding applications in diverse 

fields such as medical image analysis and object 

detection. The process of training a U-Net model for 

image segmentation using the Segmentation Models 

library, with a specific focus on converting the Xception 

model into a U-Net architecture to utilize it as a 

classification model.  

To commence the journey of training a U-Net 

model for image segmentation, it is known by now that 

the input images are of RGB format, possessing 

dimensions of (224, 224, 3). The model construction 

entails a synthesis of an encoder and a classification 

head. This amalgamation allows for the efficient 

execution of image segmentation tasks. 

The initial step involves defining the input shape 

as (224, 224, 3). Subsequently, the Xception model is 

designated as the encoder, its input shape aligned with 

the dimensions of the aforementioned images. A 

classification head is subsequently crafted, consisting of 

layers for global average pooling, dense units with ReLU 

activation functions, and an output layer containing the 

requisite number of classes for classification. 

The pivotal aspect of this model architecture lies 

in the fusion of the encoder, in this instance, Xception, 

with the classification head. This symbiotic relationship 

empowers the model to operate as an efficient 

classification tool, capable of discerning objects or 

patterns within images. 

Upon the completion of model definition and 

compilation, the training phase ensues. A batch size of 

32 is chosen for this example, though it can be adjusted 

as necessitated by specific datasets and task 

requirements. The training process spans 32 epochs to 

accommodate the particular demands of the 

segmentation project. 

 

5.1. Hyperparameter tuning 

Hyperparameter tuning is a crucial aspect of 

training deep learning models to ensure optimal 

performance. In the context of training a U-Net model for 

image segmentation, several hyperparameters can be 

fine-tuned to enhance the model's effectiveness. Here, 

we delve deeper into the hyperparameter tuning 

process: 

1. Learning Rate: The learning rate determines 

the step size during gradient descent optimization. It 

significantly influences the convergence speed and final 

performance of the model. During hyperparameter 

tuning, different learning rates are tested to find the 

optimal value that balances fast convergence without 

overshooting the minimum loss. 

2. Batch Size: The batch size determines the 

number of samples processed before updating the 

model's parameters. It affects the stability of the training 

process and the memory requirements. Experimenting 

with various batch sizes helps find the right balance 

between computational efficiency and model 

convergence. 

3. Number of Epochs: An epoch refers to one 

complete pass through the entire training dataset. The 

number of epochs defines how many times the model 

iterates over the dataset during training. Tuning this 

hyperparameter involves finding the point where the 

model achieves satisfactory performance without 

overfitting or underfitting. 
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4. Optimizer Choice and Parameters: 

Different optimizers, such as Adam, SGD, or RMSprop, 

have distinct behaviors and parameter requirements. 

Hyperparameter tuning involves experimenting with 

various optimizers and their associated parameters, 

such as momentum or decay rates, to find the 

combination that yields the best results. 

5. Data Augmentation Parameters: Data 

augmentation techniques, such as rotation, scaling, or 

flipping, can improve model generalization by exposing 

it to a diverse range of data samples. Tuning the 

parameters of data augmentation, such as rotation angle 

range or scaling factors, helps optimize the 

augmentation strategy for the specific dataset and task. 

6. Regularization Techniques: Regularization 

methods, such as dropout or L2 regularization, help 

prevent overfitting by penalizing overly complex models. 

Hyperparameter tuning involves adjusting the 

regularization strength or dropout rates to strike the right 

balance between model complexity and generalization 

performance. 

7. Model Architecture Modifications: While 

not strictly hyperparameters, modifications to the U-Net 

architecture, such as the number of layers, filter sizes, or 

skip connections, can significantly impact performance. 

Hyperparameter tuning may involve experimenting with 

different architectural variations to find the most suitable 

configuration for the task at hand. 

In our experiment, hyperparameters were 

carefully tweaked to optimize U-Net picture 

segmentation training. For gradient descent 

optimization, the Learning Rate was chosen to be 0.003 

to balance speedy convergence and stability. The Batch 

Size was 16, allowing efficient sample processing with 

little memory usage. The Number of Epochs was 50 with 

Early Stopping methods to prevent overfitting and 

ensure convergence in a realistic timeframe. 

For optimization, the Adam optimizer was used 

due to its flexible learning rate and sparse gradient 

handling. A 0.3-dropout Regularization Technique was 

used to reduce model complexity and overfitting. 

This dropout rate prevents the model from 

becoming too dependent on certain features during 

training, improving generalization to new data. 

Configuring these hyperparameters based on 

empirical data and best practices was used to train a U-

Net model that captures detailed image details for 

reliable segmentation in medical imaging and object 

detection. 

 

6. Results 

In this part, the efficiency of the proposed 

schemes is demonstrated alongside visual 

interpretations of the therapeutic significance of 

geographical localization. To assess the reliability of the 

procedure, several instances are examined using 

COVID-19 X-rays. 

 

6.1. Experimental setup 

To enhance the performance of the network, 

several experiments are undertaken to determine the 

most appropriate hyper-parameters. The research is 

conducted on a computational infrastructure equipped 

with an Intel® Xeon® CPU operating at a frequency of 

2.80 GHz, featuring a (M) Cache and several cores. This 

infrastructure is further enhanced by a substantial 

amount of RAM, totaling several gigabytes. Hardware 

acceleration is accomplished by employing an NVIDIA 

RTX Ti GPU, which features CUDA cores operating at a 

frequency of MHz and is supplied with GB of GDDR6 

memory. The assessment of the suggested 

architectures is based on a variety of conventional 

classification criteria, including accuracy, specificity, 

sensitivity, precision, and recall.  

During the initial training phase, the neural 

network is tailored to classify normal and non-COVID 

pneumonia X-rays. The U-Net architecture, which is 

derived from the Xception model, has a high degree of 

scalability, allowing for the adaptation of the receptive 

area following the characteristics of the incoming data.

 

 

 

 

 

 

 

 

 

 
Figure 3. Training loss and accuracy 
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Upon the conclusion of the preliminary training 

phase focused on non-COVID X-rays, the convolutional 

layers, which have been extensively improved, are then 

employed for training purposes using a reduced 

database consisting exclusively of COVID-19 X-rays. 

During the transfer learning phase, COVID-19 X-rays 

were subjected to experimentation with the fine-tuning of 

additional layers to explore various output classes, 

including normal and classic pneumonia.  

In a manner akin to the primary training phase, 

an auxiliary meta-learner is trained to optimize the 

predictions derived from various adaptations of the 

modified U-Net architecture, each specifically tuned for 

distinct resolutions of input X-ray images. Figure (4) 

illustrates the performance of the independently trained 

networks as well as the performance achieved after 

combining them using a meta-learner. 

The confusion matrix for the multi-class 

classification is presented in Figure (5). As anticipated, 

a small number of COVID-19 cases demonstrate 

misclassification as a result of a significant level of 

overlapping characteristics. Nevertheless, highly 

satisfactory results are achieved in classification 

scenarios. Table (1) shows a comparison of the 

proposed work compared to previous work. 

 

6.2. Test Statistic Design 

Confusion Matrix calculations: 

• True Positives (TP): 

- For Normal, TP = 0.98 

- For Pneumonia, TP = 0.91 

- For COVID-19, TP = 0.96 

• False Positives (FP): 

- For Normal, FP = 0.01 + 0.01 (misclassifying 

Pneumonia and COVID-19 as Normal) 
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Figure 4. Implications of the stacking algorithm during preliminary training 

Figure 5. Multi-class confusion matrix 
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- For Pneumonia, FP = 0.01 + 0.03 

(misclassifying Normal and COVID-19 as Pneumonia) 

- For COVID-19, FP = 0.03 + 0.01 

(misclassifying Normal and Pneumonia as COVID-19) 

• False Negatives (FN): 

- For Normal, FN = 0.01 + 0.03 (misclassifying 

Pneumonia and COVID-19 as not Normal) 

- For Pneumonia, FN = 0.01 + 0.03 

(misclassifying Normal and COVID-19 as not 

Pneumonia) 

- For COVID-19, FN = 0.01 + 0.01 

(misclassifying Normal and Pneumonia as not COVID-

19) 

 Precision for Normal = 0.98 / (0.98 + (0.01 + 

0.01)) = 0.98 / 1.00 = 0.98 

 Recall for Normal = 0.98 / (0.98 + (0.01 + 0.03)) 

= 0.98 / 1.02 ≈ 0.9608 

 Precision for Pneumonia = 0.91 / (0.91 + (0.01 + 

0.03)) = 0.91 / 0.95 ≈ 0.9579 

 Recall for Pneumonia = 0.91 / (0.91 + (0.01 + 

0.03)) = 0.91 / 0.95 ≈ 0.9579 

 Precision for COVID-19 = 0.96 / (0.96 + (0.03 + 

0.01)) = 0.96 / 1.00 = 0.96 

 Recall for COVID-19 = 0.96 / (0.96 + (0.01 + 

0.01)) = 0.96 / 0.98 ≈ 0.9796 

 F1 Score for Normal = 2 * (0.98 * 0.9608) / (0.98 

+ 0.9608) ≈ 0.9704 

 F1 Score for Pneumonia = 2 * (0.9579 * 0.9579) 

/ (0.9579 + 0.9579) ≈ 0.9579 

 F1 Score for COVID-19 = 2 * (0.96 * 0.9796) / 

(0.96 + 0.9796) ≈ 0.9698 

The results displayed in Table (2) offer useful 

insights into the efficacy of the multi-class classification 

algorithm in identifying Normal, Pneumonia, and COVID-

19 cases. 

Table 1. Comparison with previous works 

Author 
Name Method Results 

Shan et al. 
[8] 

Deep learning-based segmentation in CT 
scans. 

91.6% Dice similarity and 73.4% severity prediction 
accuracy 

Amyar et al. 
[9] Introduced CovXNet. 

96.9% COVID/Viral, 94.7% COVID/Bacterial, 
COVID/Norm, 90.2% multiclass 
COVID/Norm/Viral/Bacterial 

He et al. [11] 
Synergistic learning strategy on a CT 
dataset. 98.5% accuracy 

Mijwil and 
Maad [12] 

Used Inception-v2 and VGG-16 to detect 
COVID-19 in X-rays, with Inception-v2. 

97% accuracy for VGG-16, 93% accuracy for 
Inception-v2 

Khanday et 
al. [13] Employed Adaboost for data labeling. 98.7% accuracy in binary classification 

Tang et al. 
[14] 

Used AI to differentiate between severe 
and non-severe COVID-19 cases in CT 
scans. 87.5% average precision 

Xiao et al. 
[15] 

Developed a deep learning model for 
predicting COVID-19 progression based 
on CT scans. 97.4% training accuracy and 81.9% testing accuracy. 

Yu et al. [16] 
Employed deep learning on 729 CT scans 
for COVID-19 identification. 95.20% accuracy 

Narin et al. 
[17] 

Investigated coronavirus pneumonia 
identification using pre-trained models, 
with ResNet50 achieving. 

Database1 96.1%, Database1 96.1%, Database2 
99.5%, Database3 99.7% 

Salih et al. 
[18] 

Used multi-criteria decision-making for 
benchmarking COVID-19 machine 
learning methods. Effective addressing of complex issues. 

Zhang et al. 
[19] 

Tested a deep learning model for COVID-
19 pneumonia detection in CT scans. Sensitivity (97.2%) Detecting affected lung (80.8%) 

Proposed 
Method U-Net using Xception model as backbone Normal 98% 
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Table 2. Comparison with previous works 

Class Precision Recall F1 Score 

Normal 0.98 0.9608 0.9704 

Pneumonia 0.9579 0.9579 0.9579 

COVID-19 0.96 0.9796 0.9698 

 

An outstanding feature is the exceptional 

accuracy attained in all three categories, with values 

ranging from 0.91 to 0.98.  

This demonstrates the model's capacity to 

reduce the occurrence of false positives, which is of 

utmost importance in medical diagnostics to prevent 

unneeded treatments or interventions. In addition, the 

recall values, which assess the model's accuracy in 

properly identifying true positives, are remarkably high, 

ranging from 0.9608 to 0.9796. This implies that the 

model successfully captures a substantial fraction of 

positive instances in each category, which is crucial for 

precise illness diagnosis. 

The F1 ratings, which measure the harmonic 

mean of precision and recall, provide a well-balanced 

evaluation of the model's performance. The model 

consistently performs well across all three classes, with 

F1 scores ranging from 0.9579 to 0.9704. The scores 

demonstrate a favorable equilibrium between precision 

and recall, indicating that the model can proficiently 

differentiate between the classes while minimizing the 

occurrence of both false positives and false negatives. 

Moreover, the findings emphasize the model's 

ability to effectively handle imbalanced datasets, which 

is a frequent obstacle in medical picture analysis 

because certain classes may have fewer instances. 

Although there are inherent disparities in social class, 

the model consistently achieves excellent results for all 

categories, demonstrating its efficacy in real-life 

situations where the occurrence of certain illnesses may 

differ. 

In summary, the findings indicate that the 

suggested multi-class classification model, utilizing 

sophisticated deep learning methods, has the potential 

for precise and dependable identification of respiratory 

disorders from medical imaging data. Additional 

validation on larger and more diversified datasets, as 

well as clinical testing, could offer a further 

understanding of the model's capacity to apply to various 

situations and its practicality in real-world scenarios. 

 

7. Discussion 

The proposed method for diagnosing COVID-19 

in X-ray images using deep neural networks has some 

important limitations: 

Data Availability and Quality: One of the major 

challenges is the availability and quality of datasets. The 

scarcity of large, diverse, and annotated datasets 

specific to COVID-19 X-ray images can limit the model's 

ability to generalize across different populations and 

imaging conditions. Moreover, the quality and 

consistency of labeling in datasets can vary, leading to 

potential biases and inaccuracies in model training. 

Generalization: While the model may perform 

well on the datasets it was trained on, its ability to 

generalize to new and unseen data, especially from 

different demographics or imaging modalities, remains 

uncertain. Variations in imaging techniques, equipment, 

and patient demographics can affect the model's 

performance and reliability in real-world clinical settings. 

Interpretability: Deep neural networks are 

often criticized for their lack of interpretability. 

Understanding how the model arrives at its predictions, 

particularly in medical diagnosis where interpretability is 

crucial for trust and acceptance, can be challenging. 

Clinicians may be hesitant to rely solely on the model's 

output without insight into the underlying decision-

making process. 

Clinical Validation: The proposed method may 

require extensive clinical validation to demonstrate its 

efficacy and safety before widespread adoption in 

clinical practice. This involves rigorous testing against 

established diagnostic standards and guidelines, as well 

as validation across diverse patient populations and 

clinical settings. 

 

8. Conclusion 

In this study, a novel deep neural network 

architecture, based on the transformation of the 

Xception model into a U-Net configuration using the 

Segmentation_Models framework, was proposed for the 

efficient detection of COVID-19 and various pneumonia 

types in chest X-ray images. Features from diverse 

receptive fields were integrated into the design to 

facilitate the analysis of X-ray abnormalities from 

multiple perspectives. To address the limited availability 

of COVID-19 X-ray images, an expanded dataset 

consisting of X-rays from both healthy individuals and 

pneumonia patients was utilized for initial network 

training. Given the overlapping visual characteristics 

between COVID-19 and other pneumonia cases, the 
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network's performance was subsequently improved by 

transferring initially trained convolutional layers, along 

with the addition of fine-tuned layers. This resulted in a 

highly satisfactory diagnostic performance, even when 

utilizing a smaller dataset exclusively containing COVID-

19 X-rays. It is important to note that the effectiveness of 

these methodologies can be further enhanced by the 

inclusion of additional COVID-19 patient X-rays during 

the transfer learning phase. Experimental results from 

extensive simulations underscore the practicality of this 

approach for expediting the diagnosis of COVID-19 and 

other pneumonia cases. Moreover, the proposed U-Net 

architecture is characterized by scalability and a 

substantial receptive capacity, making it applicable to a 

wide range of computer vision tasks 
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