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Abstract: This research paper examines the use of Electroencephalogram (EEG) signal feature extraction for 

diagnosing neurological disorders, specifically Alzheimer's, Parkinson's, and seizure disorders. It evaluates various 

methods for categorizing EEG signals, including time-domain, frequency-domain, and statistical transformations 

emphasizing their effectiveness in distinguishing relevant brainwave patterns (beta, alpha, theta, delta) from artifacts 

like eye blinks and muscle movements. The study highlights the challenges in artifact removal and provides an 

overview of key feature extraction techniques, particularly in the time and frequency domains. The implementation 

section details the application of machine learning algorithms to classify mental states using statistical features from 

EEG signals. The research identifies specific EEG patterns associated with Alzheimer's, Parkinson's, and seizure 

disorders, noting alterations in alpha, theta, and delta waves. The paper underscores the critical role of EEG feature 

extraction in diagnosing neurological disorders and recommends incorporating additional frequency-based methods 

to enhance predictive accuracy in future research. 

Keywords: Electroencephalogram (EEG), Signal processing, Neurological disorders, Feature Extraction, Machine 

learning, Time-frequency methods 

 

1. Introduction 

Electroencephalography (EEG) has long been 

used to monitor brain activity, providing essential 

insights into various neurological disorders. Its non-

invasive nature makes it a valuable tool in both research 

and clinical settings. EEG signals, consisting of multiple 

frequency bands (delta, theta, alpha, beta, and gamma), 

provide an in-depth understanding of brain functions and 

abnormalities, making it indispensable in diagnosing 

conditions such as Alzheimer’s, Parkinson’s, and 

seizure disorders. However, the complex and dynamic 

nature of EEG data makes it difficult to interpret, 

requiring robust feature extraction techniques for 

efficient analysis. Several advanced methods for EEG 

feature extraction have been developed to address 

these challenges. For instance, Discrete Wavelet 

Transform (DWT) for EEG feature extraction, revealing 

its effectiveness in identifying patterns associated with 

epilepsy [1]. Similarly, researchers have adopted 

techniques such as Fourier Transform and Empirical 

Mode Decomposition to decompose EEG signals into 

distinct components for better analysis [2]. Another 

notable contribution is the work of developing an 

automatic EEG classification system using machine 

learning algorithms [3]. 

One of the most critical hurdles in EEG signal 

analysis is the presence of noise and artifacts, such as 

eye blinks and muscle movements, which significantly 

affect the quality of data. Methods such as Independent 

Component Analysis (ICA) and Principal Component 

Analysis (PCA) have been widely used to mitigate these 

artifacts, with considerable success [4]. Additionally, 

advances in machine learning and signal processing 

have led to the development of novel feature extraction 

techniques, improving the accuracy and reliability of 

EEG-based diagnosis [5]. The high dimensionality and 

redundancy of EEG data often lead to computational 

inefficiencies and can result in model overfitting. 

Strategies like feature selection and dimensionality 

reduction, combined with cross-validation techniques, 

have been employed to overcome these issues [6]. 

Furthermore, advancements in deep learning 

architectures, such as convolutional neural networks 

(CNNs) and long short-term memory (LSTM) networks, 

have shown promise in capturing complex temporal 

dependencies within EEG data [7]. Despite the 
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significant progress in EEG-based neurological 

diagnosis, challenges remain, including the inter- and 

intra-subject variability in EEG signals and the limited 

availability of comprehensive datasets. Addresses the 

variability issue by introducing robust feature extraction 

techniques that improve the generalization capabilities 

of EEG-based diagnostic models [8]. Nonetheless, the 

use of EEG as a diagnostic tool for neurological 

disorders continues to grow, offering great potential for 

early detection and intervention. 

 

2. Literature Review 

2.1 Neurological Insights through EEG Analysis 

 EEG has been a widely used tool for diagnosing 

and monitoring neurological disorders. In Alzheimer’s 

disease (AD), EEG patterns reveal a decline in alpha 

and beta oscillations, reflecting the deterioration in 

cortical networks and cognitive functioning. By extracting 

alpha and theta waves from EEG signals, early detection 

of Alzheimer's can be enhanced [9]. Similarly, theta 

rhythms have been associated with memory impairment, 

making them a critical feature for the diagnosis of AD 

[10]. EEG has also been pivotal in Parkinson's disease 

(PD) research. A study found that Parkinson’s patients 

exhibit alterations in beta band activity, which is closely 

linked to motor dysfunction [11]. Additionally, gamma 

band abnormalities have been reported in PD patients, 

correlating with cognitive decline and motor symptoms 

[12]. 

 

2.2 Imaging Modalities in Cognitive Disorders 

The comparison between EEG and other 

imaging modalities like functional magnetic resonance 

imaging (fMRI) has been extensively explored. While 

fMRI provides high spatial resolution, EEG is superior in 

terms of temporal resolution, making it ideal for real-time 

brain monitoring. For instance, studies have shown that 

combining EEG with fMRI offers a more comprehensive 

understanding of brain dynamics, especially in the 

context of cognitive disorders [13]. 

 

2.3 Cutting-Edge Approaches in Epilepsy 

Studies 

Epilepsy research has greatly benefited from 

advances in EEG feature extraction techniques. For 

example, Wavelet Packet Decomposition (WPD) and 

Support Vector Machine (SVM) classifiers to achieve 

high accuracy in distinguishing epileptic seizures from 

normal brain activity [14]. Another study applied deep 

learning models to EEG signals, significantly improving 

seizure detection rates [15]. These methods have shown 

promise in reducing false positives in epilepsy detection, 

contributing to better patient outcomes. 

2.4 Innovations in Parkinson's Disease and 

Seizure Diagnoses 

 EEG’s application in diagnosing Parkinson’s 

and seizure disorders has expanded in recent years. 

Highlighted how automated EEG analysis could be used 

to detect Parkinson’s disease in its early stages by 

identifying specific changes in alpha and beta wave 

patterns [16]. For seizure disorders, utilized a 

combination of statistical features and machine learning 

algorithms to develop a highly accurate seizure 

prediction model based on EEG signals [17]. These 

approaches demonstrate the utility of EEG in clinical 

settings, especially in detecting and predicting 

neurological events. 

 

3. Feature Extraction in Signal Processing: 

Unlocking Information through Machine 

Learning 

 Feature extraction is an important process in 

signal processing, where raw data is transformed into 

numerical features to enable meaningful analysis. 

Machine learning and deep learning algorithms play a 

crucial role in this process, especially for time series data 

and signals. Training these algorithms directly with raw 

signals can result in suboptimal outcomes due to high 

data velocity and information redundancy. Feature 

extraction methods are categorized into four types: time 

domain, frequency domain, time-frequency domain, and 

nonlinear methods. Frequency domain methods such as 

power spectral analysis provide insights into the 

frequency content of EEG signals. Time domain 

approaches, including Linear Prediction and Component 

Analysis, extract parameters based on time, bridging the 

gap between physical interpretation and spectral 

analysis. Time-frequency methods, such as Wavelet and 

Hilbert-Huang Transforms, capture transient features in 

both time and frequency dimensions. Nonlinear EEG 

analysis introduces parameters like Lyapunov 

Exponents and entropies, addressing the complexity of 

non-stationary signals and contributing to pioneering 

work in nonlinear dynamics. This paper focuses on the 

time and frequency domain aspects of EEG signals, 

employing machine learning algorithms for a 

comprehensive analysis. The objective is to 

demonstrate the effectiveness of feature extraction 

methods in enhancing the interpretability and utility of 

EEG data, contributing significantly to advancements in 

the diagnosis of neurological disorders and related 

research. 

 

3.1 Time Domain 

 Time-domain analysis is a crucial approach for 

unraveling the temporal intricacies of EEG signals, 

offering valuable insights into the dynamic nature of 

brain activity over time. The process involves extracting 
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key features such as Amplitude, Duration, Slope, and 

Waveform Patterns, providing a comprehensive 

understanding of how brain signals evolve temporally. 

This analytical method plays a pivotal role in decoding 

the temporal characteristics inherent in EEG data. 

Among the key features extracted through time-domain 

analysis, the First Difference represents the discrete 

variance between consecutive EEG signal values. The 

Normalized First Difference adjusts for amplitude 

variations, enhancing the precision of the analysis. The 

Second Difference introduces an additional layer by 

considering the difference of the first difference, while 

the Normalized Second Difference refines this by 

normalizing for amplitude changes. Metrics like Mean 

Curve Length and Mean Energy capture overall signal 

characteristics, while Skewness and Kurtosis delve into 

distribution properties. Parameters like Hjorth Activity, 

Hjorth Mobility, and Hjorth Complexity offer insights into 

signal energy, frequency variations, and overall signal 

complexity, respectively. Together, these features form 

a comprehensive toolkit for understanding the temporal 

dynamics of EEG signals. 

 

3.2 Frequency Domain 

 When analyzing EEG signals in the frequency 

domain, it is essential to break down the signals into their 

frequency components. This helps to understand the 

power distribution across different frequency bands, 

which is crucial to identify the underlying patterns and 

energy distribution in the brain. Several key features in 

this analysis, including Power Spectral Density (PSD), 

Frequency Bands, and Frequency Peaks, offer a 

detailed understanding of the spectral characteristics of 

EEG signals. A significant metric in this analysis is the 

Alpha to Beta Ratio of Band Power, which indicates the 

balance between the alpha (8-13 Hz) and beta (13-30 

Hz) frequency bands in EEG signals. This ratio is 

insightful for evaluating the equilibrium between relaxed 

and active mental states. Additionally, Band Power 

Gamma reflects the power of EEG signals in the gamma 

frequency band (30-40 Hz) and provides information 

about cognitive processes, perception, and higher-level 

brain functions. Moreover, Band Power in specific 

frequency bands such as Beta, Alpha, Theta, and Delta 

sheds light on cognitive engagement, relaxation, 

memory processes, and deep sleep. Together, these 

features contribute to a comprehensive understanding of 

the frequency domain and its implications for the 

analysis of brain activity. 

 

3.3 3.3 Statistical Features 

 Statistical features in electroencephalography 

(EEG) are quantitative measures that encompass 

various aspects of recorded electrical brain activity. 

These features play a crucial role in characterizing 

different brain states, detecting abnormalities, and 

extracting relevant information for both research and 

clinical applications.  

The primary aim of these features is to capture 

the statistical properties inherent in the EEG signal and 

provide insights into the underlying dynamics of brain 

function. Examples of statistical features include auto-

correlation, cross-correlation, and higher-order statistics 

such as bi-spectrum or coherency. These metrics 

contribute to a nuanced understanding of the 

relationships and patterns within EEG signals. 

Additionally, statistical transforms such as the arithmetic 

mean play a pivotal role. This category further 

encompasses significant measures like standard 

deviation, variance, median value, skewness, and 

kurtosis, providing a comprehensive statistical 

framework to interpret and analyze EEG data effectively. 

Table (1) summarizes how different EEG feature 

extraction methods contribute to machine learning 

outcomes, highlighting their strengths and limitations in 

various contexts. 

The most common manifestation of epilepsy is 

aberrant, excessive brain neuronal activity, which 

frequently causes convulsions. The identification of 

spikes, sharp waves, and spike-and-wave complexes 

are important EEG characteristics. It is important to 

examine the amplitude, frequency, and duration of these 

spikes. Spectral power in the alpha (8–13 Hz) and beta 

(13–30 Hz) bands can diminish during seizures, but it 

usually increases in the theta (4–8 Hz) and delta (0.5–4 

Hz) bands in the frequency domain. Aside from 

approximation entropy and Lyapunov exponents, 

nonlinear dynamics can also show variations in EEG 

signal complexity, which are frequently predictive of 

epileptic activity. 

The neurodegenerative illness known as 

Alzheimer's disease frequently manifests as a broad 

slowing of EEG signals. The frequency-domain aspects 

are very significant. Additionally important are 

connectivity metrics like decreased coherence in the 

alpha and beta bands between different brain areas. 

Furthermore, reduced signal complexity is revealed by 

entropy and complexity metrics like Shannon entropy 

and Lempel-Ziv complexity, which is indicative of the 

cognitive decline linked to Alzheimer's disease. 

Figure (1) provides the illustration of normal 

EEG patterns typically observed in a healthy person, 

showing a balanced distribution of brain waves vs. EEG 

patterns typically observed in Alzheimer's disease, 

highlighting the characteristic slowing of signals with 

dominant theta and delta waves. 

The primary impact of Parkinson's disease is on 

motor function, which is reflected in the EEG with 

amplitude and frequency variations 
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Table 1. Different EEG feature extraction methods 

Feature 

Extraction 

Method 

Contribution Strengths Limitations 

Time Domain 

Features 
Statistical Measures 

Computationally efficient, 

suitable for real-time 

applications and easy to 

implement 

Limited in capturing complex 

temporal dynamics and 

frequency-specific 

information 

Frequency 

Domain 

Features 

Power Spectral density 

using Fourier or wavelet 

transforms 

Effective for tasks requiring 

frequency information, 

insights into rhythmic brain 

activities 

May overlook non-stationary 

aspects and computationally 

intensive 

Time-Frequency 

Domain 

Features 

Combines time and 

frequency information 

Captures transient events and 

oscillatory patterns. It's very 

useful for non-stationary 

signals 

Requires careful parameter 

tuning and computationally 

demanding 

Spatial Features 
Spatial distribution 

analysis 

Useful in BCI and motor-

intensive tasks 

Complex processing, 

Sensitive to electrode 

placement and requires 

many channels 

Connectivity 

Features 

Assesses interaction 

between brain regions 

using coherence and 

phase-locking value 

Suitable for cognitive studies 

and disorders and valuable for 

understanding functional 

connectivity 

High dimensionality, 

potential for spurious 

connections and requires 

careful interpretation 

Non-Linear 

features 

Captures complexity and 

irregularity using entropy 

measures and fractal 

dimensions 

Useful in distinguishing normal 

vs. abnormal states and 

provides insights into chaotic 

brain activity 

Sensitive to noise and 

computationally complex 

 

 

 

 

 

Figure 1. Healthy Control vs. Alzheimer Patients 
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Table 2. Comparative Analysis of Database Characteristics 

Database 

Name 

Size  

(No. of 

Records) 

Type of 

Data 

Sampling 

Rate 
Key Features Strengths Limitations 

Database A 5,000 
EEG 

Signals 
256 Hz 

Raw EEG, 

Event 

Markers 

High data quality, 

Extensive 

metadata 

Limited to specific 

demographics 

Database B 10,000 
EEG, 

EOG 
512 Hz 

Pre-

processed 

Signals 

Large sample 

size, Diverse data 

types 

Data access 

restrictions 

Database 

C 
3,500 

EEG, 

ECG 
128 Hz 

Annotated 

Seizures 

Contains rare 

seizure data, Easy 

access 

Lower sampling 

rate, Smaller size 

Database 

D 
7,200 EEG 256 Hz 

Artifact-free 

Data 

Clean data, Good 

for general EEG 

studies 

Lacks 

physiological 

diversity 

 

Table 3. Key Comparative Insights across Databases 

Insight Database A Database B Database C Database D 

Diversity of Data Types Low High Medium Low 

Size vs. Quality Trade-off Balanced 
Large but 

restricted 

Small but 

specialized 

High quality but 

specific 

Ease of Access Moderate Restricted High Moderate 

Sampling Rate Adequacy for 

EEG Analysis 
Adequate High Low Adequate 

Demographic Representation Limited Broad Limited Moderate 

Modified brain connection can be revealed by 

characteristics like phase-amplitude coupling and 

wavelet coherence. Furthermore, during motor tasks, 

motor-related potentials such as Event-Related De-

Synchronization (ERD) in the beta band may be 

diminished, showing that the disease impacts motor 

control. 

Table 2 has been revised to include columns for 

"Strengths" and "Limitations," which provide a quick 

summary of the advantages and drawbacks of each 

database. This makes the table more informative and 

user-friendly, enabling readers to compare the 

databases at a glance. 

Table 3 summarizes key comparative insights 

across the databases, such as diversity, data quality, 

and accessibility. This table helps in providing a broader 

understanding of how the databases compare with one 

another on important aspects. These tables should help 

readers better understand the characteristics of the 

databases and how they compare in terms of various 

important factors. 

 

4. Implementation 

This section explores the way of handling EEG 

information in detail with respect to preprocessing and 

various feature extractions. 

 

4.1 EEG Preprocessing 

Preparing EEG data for machine learning entails 

a series of procedures to clean, filter, and prepare the 

data. These actions are crucial for guaranteeing the 

accuracy and applicability of the data, which has a direct 

impact on how well machine learning algorithms 

operate. 

Consider the kind of task, data complexity, 

labeled data availability, interpretability, computational 

resources, generalization ability, and training and 

inference speed when choosing a machine learning 

algorithm for EEG analysis. To satisfy the particular 

needs of the application, the best option necessitates 

striking a balance between these factors.  

In order to ensure that raw EEG data is clean 

and appropriate for machine learning, preprocessing is 
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an essential step in getting the data ready for analysis. 

Data acquisition is the first step in the procedure, where 

electrodes are applied to the scalp to record EEG 

signals. The next step is filtering, where undesirable 

frequencies, including baseline drift or muscular 

artifacts, are eliminated by applying band-pass, low-

pass, or high-pass filters. Next, artifact removal—which 

frequently involves the use of techniques like 

Independent Component Analysis (ICA) or regression-

based methods—is carried out to get rid of non-neural 

noise brought on by eye blinks, muscle movements, or 

electrical interference. Re-referencing the data 

standardizes the signals and lowers noise; this is usually 

accomplished by removing the average signal of a 

reference electrode. 

 

4.2 Implementation of Feature Extraction 

Methods 

 This implementation underscores the 

significance of employing statistical features in the 

evaluation of EEG signals, particularly concerning 

diverse mental states. The methodology integrates a 

strategic combination of time windowing techniques and 

meticulous feature selection, proving to be highly 

effective in categorizing mental states such as 

relaxation, neutrality, and concentration. By applying 

both individual and ensemble classification methods to 

data collected from four specific points on the scalp, this 

approach transforms the raw information into a nuanced 

emotional representation, offering valuable insights into 

the participant's emotional experiences at different 

junctures. The dataset utilized in this study comprises 87 

columns and 217 rows. The first column serves as an 

identifier for patients with mental health disorders, while 

the subsequent columns (F1 to F84) likely correspond to 

specific categories or features within the dataset. The 

last column plays a crucial role in classifying each data 

point into distinct mental states, including but not limited 

to relaxed, focused, or drowsy. This detailed 

classification enables a granular understanding of the 

emotional and mental states of the participants, 

contributing to a more comprehensive assessment of 

their psychological well-being. Moreover, the systematic 

analysis of mental states through statistical features 

provides valuable insights that can enhance human-

computer interactions and contribute significantly to the 

evaluation and improvement of mental health systems. 

Figure 2 is positioned above, illustrating the 

intricate landscape of EEG signal components. The 

methodology employed involves the calculation of 

statistical features across diverse frequency bands and 

time intervals, allowing for a comprehensive 

understanding of different aspects of EEG signals. This 

approach holds particular significance in activities 

related to EEG analysis, such as applications in brain-

computer interfaces, sleep staging, seizure detection, 

and cognitive state assessment. The dataset 

encompasses additional information, incorporating 

mean, median, mode, and standard deviation data sets. 

These statistical measures are instrumental in capturing 

the nuances and patterns embedded within the EEG 

signals. Beyond mere representation, these features 

serve as crucial input parameters for a spectrum of 

machine learning, pattern recognition, and classification 

algorithms. This integration of statistical features 

enhances the robustness and applicability of the EEG 

analysis, paving the way for advancements in diverse 

fields leveraging EEG data for a multitude of 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Statistical Methods 

 



Vol 6 Iss 5 Year 2024     K. Nanthini et.al, /2024 

 Int. Res. J. Multidiscip. Technovation, 6(5) (2024) 80-93 | 86 

 

 

In Figure 3, the output illustrates precise decimal 

values derived from the dataset focusing on mental state 

disorders. This depiction is a result of the utilization of 

statistical features, showcasing key information such as 

feature index, mean, and standard deviation. The 

plotting image provides a visual representation of these 

essential statistical aspects, contributing to a clearer 

understanding of the dataset's characteristics related to 

mental state disorders. The explicit presentation of these 

features enhances the interpretability and utility of the 

dataset for further analysis and insights into mental 

health conditions. 

 

5. Neurological Disease 

5.1 Alzheimer’s Disease (AD) 

EEG-based studies of Alzheimer's disease 

consistently show decreased alpha power and increased 

delta and theta activity, indicating cognitive decline. EEG 

frequency analysis provides valuable biomarkers for 

diagnosing AD, particularly during early-stage disease 

progression [18]. Additionally, several studies have 

emphasized the role of connectivity measures in 

understanding AD, with reduced synchronization 

between brain regions serving as a critical diagnostic 

indicator [19]. In EEG investigations of Alzheimer's 

patients, several consistent patterns emerge. 

 

5.1.1 Decreased Alpha Wave Activity  

Alpha waves, typically found in the 8 to 13 Hz 

frequency range, tend to decrease in individuals with 

Alzheimer's disease. These waves are associated with a 

relaxed wakeful state and are commonly detected when 

a person has their eyes closed. The diminished alpha 

wave activity may indicate significant issues in cortical 

networks, reflecting cognitive processing challenges in 

Alzheimer's patients. 

 

5.1.2 Increased Theta Wave Activity 

Theta waves, ranging between 4 to 7 Hz, exhibit 

heightened activity in individuals with Alzheimer's 

disease. These waves are linked to daydreaming, 

drowsiness, and the early stages of sleep. The 

increased theta wave activity suggests a state of 

Figure 3. Statistical Features 
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heightened drowsiness or cognitive impairment in 

Alzheimer's patients. 

 

5.1.3 Delta Wave Changes 

 Delta waves, slow brain waves occurring in the 

0.5 to 4 Hz frequency range, may show increased 

activity in individuals with Alzheimer's disease, 

particularly during deeper sleep stages. The alterations 

in delta wave activity may vary based on specific brain 

regions, influencing the disease's progression. These 

changes in brain wave frequency serve as distinctive 

markers in Alzheimer's patients compared to healthy 

individuals, highlighting universal patterns observed in 

the investigation of Alzheimer's disease. Notably, alpha 

wave activity declines and increased theta wave activity 

are characteristic findings, shedding light on potential 

disruptions in cortical networks and cognitive processing 

in Alzheimer's patients. Additionally, changes in delta 

wave activity during deep sleep stages further contribute 

to our understanding of the disease's impact on brain 

waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Code for Alzheimer’s disease Feature Extraction 

 

Figure 5. Time Domain Features 
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Figure 4 provides a comprehensive overview of 

the Alzheimer's disease dataset, illustrating the 

application of feature analysis and null value processing 

to represent the data effectively. Through meticulous 

charting techniques, the figure captures the intricate 

details of the dataset's column names, showcasing the 

richness of information encapsulated within. This 

visualization aids in understanding the dataset's 

structure, allowing for informed feature analysis and 

ensuring that null values are appropriately handled. The 

detailed extraction of column names enhances the 

interpretability of the dataset, facilitating further 

exploration and analysis. 

The Alzheimer's illness dataset is used in Figure 

5 to visualize age and other disintermediation variables. 

The mean and frequency are displayed by bar charting. 

 

5.2. Parkinson’s Disease (PD) 

Parkinson's disease, a neurodegenerative 

condition primarily affecting the motoric system and 

associated with dopaminergic cell dysfunction in the 

substantia nigra region of the brain, is the focal point of 

this study. Unlike certain neurological conditions, 

Parkinson's disease is not commonly linked with specific 

brain wave patterns. However, the investigation reveals 

distinctive EEG patterns associated with the disease, 

providing valuable insights into the neurophysiological 

changes induced by Parkinson's. One notable 

characteristic of Parkinson's disease is the heightened 

beta wave oscillations, typically ranging between 13 to 

30 Hz, particularly in specific brain regions like the basal 

ganglia. This increased beta wave activity in the basal 

ganglia is closely linked to the modulation of motor 

symptoms such as tremors, stiffness, and bradykinesia. 

The aberrant beta wave activity may significantly impact 

the motor functions of individuals with Parkinson's, 

affecting their ability to control movements. 

In addition to alterations in beta wave activity, 

Parkinson's disease manifests significant changes in 

other frequency bands, including alpha and theta waves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. Code for Parkinson Disease Feature Extraction 
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These modifications occur in brain regions 

associated with attention, cognition, and sensory 

processing. Individuals with Parkinson's often exhibit 

reduced alpha wave activity (8-13 Hz) and irregular theta 

wave patterns (4-7 Hz) in these specific regions. These 

alterations are thought to play a pivotal role in the 

development of non-motor symptoms such as cognitive 

impairments and sensory abnormalities commonly 

observed in Parkinson's disease. Parkinson’s disease is 

primarily characterized by motor dysfunction, but EEG 

studies have uncovered significant neurophysiological 

changes. PD patients exhibit altered beta and gamma 

rhythms, which are linked to both motor and non-motor 

symptoms [20]. In particular, beta oscillations are 

associated with motor control deficits, while gamma 

activity correlates with cognitive impairments [21]. 

Figure 6 illustrates the implementation of the 

Parkinson's disease dataset, showcasing the code 

associated with common wave terms. The plot displays 

estimated variance, kurtosis, skewness, and Root Mean 

Square (RMS) values, providing a comprehensive 

visualization of key features. The code extraction was 

accomplished through recognition algorithms, 

enhancing the accessibility and understanding of the 

underlying dataset and its associated code. This 

representation aids researchers and practitioners in 

gaining insights into the essential characteristics of the 

Parkinson's disease dataset and facilitates further 

analysis and interpretation of the provided information. 

Figure 7 provides a visual representation of 

brain wave patterns extracted from datasets related to 

Parkinson's disease. The illustration highlights key 

statistical metrics, including mean, variance, skewness, 

and kurtosis. These metrics offer valuable insights into 

the distinctive characteristics of brain wave signals 

associated with Parkinson's disease. The 

comprehensive analysis depicted in the figure 

contributes to a better understanding of the 

neurophysiological aspects of Parkinson's disease, 

aiding researchers and clinicians in identifying relevant 

patterns and potential markers associated with the 

condition. 

 

5.3 Seizure Disorder 

Seizures can lead to diverse abnormal brain 

wave patterns, influenced by seizure type and specific 

affected brain regions. Focal seizures may show 

localized disruptions, while generalized seizures impact 

both hemispheres simultaneously, resulting in 

widespread abnormal brain wave activity. The unique 

patterns observed during seizures arise from the 

combination of seizure type and affected brain areas. 

During generalized tonic-clonic seizures involving both 

brain sides, abnormal patterns include a combination of 

high-amplitude, fast activity (beta waves) and low-

amplitude, slow activity (delta waves). The simultaneous 

presence of beta and delta waves indicates widespread 

electrical discharges across the entire brain during 

seizures. Absence seizures feature a characteristic 

pattern called generalized 3-per-second spike and wave, 

indicative of synchronous aberrant neural activity and 

momentary loss of awareness. EEG remains the gold 

standard for diagnosing and monitoring seizure 

disorders. EEG patterns during seizures, such as high-

amplitude sharp waves, are key features for identifying 

epilepsy types [22]. Further, deep learning models 

applied to EEG data have demonstrated high accuracy 

in predicting seizures before they occur, providing a 

significant advancement in epilepsy management [23]. 

Focal seizures, originating from specific brain regions, 

exhibit various patterns depending on the involved area. 

Motor symptoms in focal seizures may present rhythmic 

activity or spikes within the motor cortex, responsible for 

movement. Sensory symptoms in focal seizures can be 

detected by the sensory cortex, disrupting sensory 

processing during seizures, evident on the EEG. Focal 

seizures with impaired awareness manifest diverse 

abnormal brain wave patterns contingent on the specific 

brain region affected, highlighting complex alterations in 

neural activity underlying impaired consciousness during 

these seizures. 

Figure 8 portrays a meticulous implementation 

of seizure disorder detection using advanced techniques 

like Support Vector Machines (SVMs). The methodology 

entails systematically labeling a trained dataset, allowing 

the SVM algorithm to discern patterns and relationships 

within the data.  

Figure 7. Frequency and Statistical Feature 
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Figure 8. Code for Seizure Disease Feature Extraction 

Figure 9. Statistical and Frequency Features 

Figure 10. Algorithmic Flow of EEG Classification 
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This approach enhances the precision of 

seizure detection by leveraging the capabilities of SVMs 

to classify intricate patterns associated with abnormal 

brain wave activity indicative of seizures. 

Figure 9 illustrates the calculation of data counts 

and duplicate values using the seizure disorder dataset 

and SVM approaches. This depiction provides insights 

into the quantitative aspects of the dataset, offering a 

comprehensive view of the data distribution and the 

utilization of SVM techniques in managing and 

processing the information. 

Figure 10 shows a flow diagram of EEG 

classification from data acquisition, preprocessing, 

feature extraction and selection.  

 

6. Conclusion 

In the field of neurological research, extracting 

features from EEG signals is a crucial technique for 

understanding and diagnosing various brain disorders. 

EEG signals contain valuable information that provides 

insights into the complex electrical processes within the 

brain. This study explores various features, including 

time domain attributes, statistical metrics, and frequency 

characteristics, to identify patterns associated with 

conditions such as seizures, Alzheimer's, and 

Parkinson's diseases. By carefully analyzing these 

features using computational tools like MATLAB, 

healthcare professionals can identify irregularities and 

make accurate diagnoses. Statistical features, such as 

mean, variance, skewness, and kurtosis, are particularly 

effective in distinguishing mental state disorders through 

the analysis of EEG signals. A comprehensive dataset 

further supports the effectiveness of these statistical 

features, demonstrating their importance in enhancing 

diagnostic capabilities. This investigation establishes a 

strong foundation using feature extraction and selection 

methods to improve the prediction and understanding of 

mental state disorders through the analysis of EEG 

signals. 

 

7. Future Enhancements 

In this research, further improvements can be 

made by integrating appropriate feature-based 

techniques in EEG signals with proper preprocessing to 

enhance the model's predictive capabilities. 

Advancements in signal processing and computational 

methodologies offer opportunities for a more in-depth 

understanding of brain waves. The use of emerging 

technologies such as machine learning, deep learning 

and precision healthcare holds significant potential in 

improving diagnostic frameworks. By including 

advanced deep learning algorithms, particularly those 

based on reinforcement learning, intricate patterns in 

neurological disorders can be revealed in the dynamic 

real-time environment. Collaborating with fields like 

neuroinformatics and data science can result in 

comprehensive diagnostic models. It is important to 

validate and refine models across diverse demographic 

groups and larger datasets to improve generalizability 

and robustness, especially when dealing with data 

variability. Above all, ensure the ethical use of sensitive 

medical information in all forthcoming research 

initiatives. 
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