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Abstract: Thyroid disease remains a significant health concern, necessitating advanced diagnostic tools for swift 

and accurate identification. The initial step involves preprocessing datasets, employing an Outlier Detection Method 

with Isolated Forest in conjunction with data normalization techniques to eliminate noise and standardize the data, 

laying a robust groundwork for subsequent analysis. Subsequently, feature extraction is conducted utilizing an 

Enhanced AlexNet architecture augmented by a more intricate Chameleon Swarm Algorithm (CSA) model to discern 

finer patterns within the data, enhancing the discriminative nature of the extracted features. Following this, a feature 

selection strategy employing hybrid optimization is deployed, amalgamating the strengths of Equilibrium Optimizer 

and Artificial Gorilla Troops Optimizer (AGTO) into a hybrid model named HAGTEO, aiming to identify the most 

informative features, thus reducing dimensionality and enhancing classifier efficiency. Ultimately, the Gated 

Recurrent Unit (GRU) classifier is employed for thyroid disease classification based on the extracted and selected 

features. Renowned for its capability to capture temporal dependencies, the GRU model further enhances 

classification accuracy. The proposed framework is subjected to testing on two distinct datasets, demonstrating its 

efficacy in thyroid disease detection. Experimental outcomes reveal superior performance compared to conventional 

methods, achieving accuracies of 98.07% and 98.00% for dataset 1 and dataset 2, respectively. As an advanced 

diagnostic solution for thyroid disease, it holds promising potential. 

Keywords: Gated Recurrent Unit, Thyroid Disease, AlexNetwork, Artificial Gorilla Troops Optimization, Equilibrium 

Optimization 

 

1. Introduction 

Incidences of thyroid disease have been going 

up in recent years. Thyroid glands are important organs 

that controls metabolism. A dysfunctional thyroid gland 

may have any number of abnormalities. Two commonly 

occurring types are hyperthyroidism and hypothyroidism 

[1]. Thyroid disorders are diagnosed in many people, 

including hyperthyroidism and hypothyroidism, each 

year. Triiodothyronine (T3) and levothyroxine (T4) are 

secreted by the thyroid gland; insufficient amounts of 

these hormones can cause hypo- and hyperthyroidism 

[2]. In the literature, many methods are put forward for 

detecting thyroid disease diagnosis. Good treatment for 

the patient requires that it make thyroid disease 

predictions proactively, so as to save human lives and 

prevent unnecessary medical bills. Early thyroid 

diagnosis prediction is attained by utilising deep learning 

and machine learning methods in conjunction with the 

advancement of data processing and computation 

technologies [3]. These methods can also classify kinds 

of illness as hypothyroidism or hyperthyroidism etc. 

In recent years, the progress of data mining, big 

data, image-processing technologies, and parallel 

computing has led to their widespread adoption across 

various healthcare domains, contributing significantly to 

improving human health and well-being. Data mining 

applications in healthcare could include drug discovery, 

early diagnosis and diagnosis, virus outbreak prediction, 

and patient-specific drug adaptation testing' own 

conditions; and management analysis of healthcare 

information based on statistics calculation. The health 

care professionals try as best they can to identify 

illnesses early on so that treatment may be given 

promptly without great expense, and the disease itself is 

cured quickly. One of the conditions that gravely affects 

a significant portion of the human population is thyroid 

disease [4]. On the other hand, according to the 

American Thyroid Association (the world's leading 

professional group), thyroid disease affects 20 million 

people in the US [5]. At least 12% of Americans will 

experience thyroid disorders at some point in their lives 

[6, 7]. According to these figures, thyroid-related 

mailto:hemapriyaauphd@gmail.com
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illnesses shouldn't be taken lightly. Efforts to improve 

health care techniques for the prevention and early 

thyroid disease detection should be made use of 

advanced technologies as much possible [8]. 

In agriculture, like other fields the last few years 

has seen a boom in deep learning (DL) methods. 

Computer vision and artificial intelligence have 

progressed so much that there are new ideas [9, 10]. 

These approaches are more accurate than conventional 

methods, providing better decision making. Because of 

this progress in hardware technology, DL methods are 

now used to solve problems that otherwise would be too 

complex for a reasonable amount of time [11, 12]. The 

findings of research in this field are no trifles. DL is 

already an up-to-date technique for land cover 

classification, and it could also be used in many other 

kinds of tasks. Several kinds of deep neural networks 

(DNNs) have led to excellent results in hyperspectral 

analysis [13]. As for classification, CNNs have proven to 

be effective. 

 

1.1. Motivations 

Given that thyroid disease diagnosis must be 

rapid and accurate, this study sets out to refine existing 

diagnostic methods. With early detection regarded as 

important for improving patient outcomes, the research 

is aimed at providing a reliable and advanced tool to the 

medical community. The goal is to develop appropriate 

tools for diagnosing and treating thyroid disease that 

clinicians can use without themselves becoming victims 

of its side effects. 

 

1.2. Problem Statement 

Existing methods of diagnosis for thyroid 

disease suffer from problems in terms of accuracy and 

speed. Misdiagnosis and delayed diagnosis can cause 

poor health. An accurate and modern diagnostic 

approach is needed to increase the precision of thyroid 

diseases. Many of the current techniques experience 

difficulties with high-dimensional and complex data, so a 

new approach must be able to effectively extract salient 

features. Facing these obstacles, this paper needs a 

comprehensive framework that simultaneously 

optimizes feature selection and classification. This 

allows for a more reliable and accurate detection system 

to help ensure timely medical interventions save lives. 

 

1.3. Main Contributions 

Data Preprocessing:  By combining outlier 

detection with data normalization technologies, a solid 

foundation for analysis is laid down. The model runs on 

squeaky-clean and standardized data. 

Advanced Feature Extraction: Using the 

AlexNet architecture and an optimized Chameleon 

Swarm Algorithm (CSA) model enabled us to capture 

complicated elements in this data, yielding a robust set 

of features that allowed the new system to better 

distinguish between varied thyroid conditions. 

Efficient Feature Selection: This hybrid 

optimization method, combining Artificial Gorilla Troops 

Optimizer (AGTO) with Equilibrium Optimizer (EO), 

results in the removal of all redundant features that add 

no useful information. The process not only reduces 

dimensionality but also dramatically improves classifier 

efficiency as a whole. 

Classification: Leveraging The capacity of the 

model to represent temporal dependencies in the data, 

it classified thyroid disease accurately and precisely by 

using a specialized recurrent neural network (GRU). 

 

1.4. Organization of the paper 

The remaining sections of the study are 

organised in the form of shadows: A. In Section 2, the 

relevant works are summarized; B. The model proposed 

by the author is explained briefly in section 3; C: Details 

of results analysis as well as validation and an 

explanation for failure cases are found below section 4 

and D: Summary and conclusion appear finally under 

section 5. 

 

2. Related works 

Sharma et al. employ three modern deep 

learning techniques (DeiT, Mixer-MLP, and Swin 

Transformer) to extract features from thyroid image 

datasets [14]. The feature extraction methods are built 

upon the MLP and Image Transformer models. The 

presence of numerous redundant features can lead to 

overfitting of classifiers, diminishing their ability to 

generalize effectively. Six feature transformation 

techniques are investigated for reducing the 

dimensionality of the data in order to avoid the overfitting 

problem: PCA, TSVD, FastICA, ISOMAP, LLE, and 

UMP. On the transformed dataset, the five classifiers LR, 

NB, SVC, KNN, and RF are assessed via the 5-fold 

stratified cross-validation technique. The performance is 

assessed using stratified cross-validation because there 

are significant class imbalances in both datasets. 

Models at various stages of analysis are ranked using 

the MEREC-TOPSIS MCDM technique. In the wrapper 

feature selection mode, the optimal strategy for 

dimensionality reduction is assessed in the second 

stage, while the optimal strategies for feature extraction 

and classification are chosen in the first. Applying the 

recently proposed FOX optimisation algorithm for meta-

heuristics, the two best-ranked models are further 

chosen for the weighted average ensemble learning and 

features selection. The feature selection + random forest 

model based on PCA+FOX optimisation obtained the 

highest TOPSIS score and demonstrated exceptional 

performance on the ultrasound dataset, with a 99.13% 

accuracy, 98.82% F2-score, and 99.13% AUC-ROC 
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score. AUC-ROC of 95.48%, F2-score of 92.01%, and 

accuracy score of 90.65% were also achieved by the 

model on the histopathological dataset. This work takes 

advantage of the novel combination of various 

algorithms to enhance the diagnosis of thyroid cancer. 

For illness diagnosis, Mohan et al. proposed the 

use of the Vgg-19 feature extractor in a novel Long 

Short-Term Memory-based Convolution Neural Network 

(LSTM-CNN), proposed by Mohan [15]. They used a 

novel strategy called Hybrid Black Widow Optimisation 

with Mayfly Optimisation Approach (HBWO-MOA) to 

select features. To see how well this method would 

classify and predict thyroid diseases, their research used 

ultrasound pictures from the DDTI dataset. According to 

recalls, F1 score, sensitivity, accuracy, and precision, 

the recommended Vgg-19-LSTM method beat other 

convolutional methods such as AlexNet-LSTM, ResNet-

LSTM, and Vgg16-LSTM. 

One study, by Brindha & Muthukumaravel, 

aimed to assess the performance of two different 

classifier models in diagnosing thyroid disease [16]. 

After training the models using UCI repository data, 

these method's accuracy and precision at detecting 

hyperthyroidism and hypothyroidism, respectively, were 

examined. But their results revealed that the CNN 

classifier was superior to the SVM classifier, which 

achieved 89 % accuracy and a precision of 87 %, 

producing more consistent and reliable results. 

Punit Gupta et al., proposed an approach which 

uses a differential evolution (DE)-based optimization 

algorithm to fine-tune the parameters of machine 

learning models [17]. Bias field correction is combined 

with a hybrid optimisation technique, namely Black 

Widow Optimisation and Mayfly Optimisation Approach 

(HBWO-MOA), to select features. The LSTM and Vgg-

19 of Deep Learning (DL) are presented for disease 

classification. Thyroid disease prediction and 

classification from ultrasound images in the DDTI 

dataset are efficient. According to this analysis, the 

suggested technology outperforms the convolutional 

methodology in terms of accuracy. In comparison to 

current prediction techniques Comparing the proposed 

Vgg-19-LSTM approach to other LSPs like AlexNet-

LSTM, ResNet-LSTM, and Vgg16-LSTM, it shows better 

recalls, sensitivity, accuracy, precision, and F1_score. 

The work by Alnaggar, et al. provided an 

improved multiclass classification model that employed 

XGBoost to arrange individuals into groups based on the 

sort of thyroid condition they had [18]. The main 

contributions were an enhanced feature selection 

accuracy of the dataset and a multiclass classification to 

differentiate flanked by three different types of thyroid 

disorders. In terms of the evaluated criteria, the 

extremely selective algorithm XGBoost showed the best 

classification. When the hyperparameters were 

optimised, the model best cutting-edge models with a 

correctness of 99%. 

The use of deep learning algorithms for thyroid 

ultrasound image segmentation, feature extraction, and 

classification differentiation is covered in detail in this 

article by Xie, [19]. It also provides an overview of the 

deep learning algorithms used to process multimodal 

ultrasound images. Lastly, it highlights the issues with 

thyroid ultrasonography image diagnosis as it stands 

today and anticipates new avenues for research and 

development. This work can help advance the use of 

deep learning in clinical ultrasound image diagnosis of 

thyroid disease and serve as a resource for medical 

professionals diagnosing thyroid disease. 

Dhamodaran, et al. set out to look at the 

feasibility of using support vector machines (SVM), 

(KNN), and Nave Bayes to categorise thyroid datasets 

into several classes [20]. By comparing several machine 

learning methods, it found one with the highest illness 

prediction accuracy. Predictions of future TD cases and 

estimates of the affected rate levels were shown to be 

more accurate using the Expert organization for TD 

Diagnosis (ESTDD) model. The sophisticated model 

achieved the specified levels of performance in terms of 

accuracy (98.53%), throughput (98.34%). 

 

2.1. Research Gaps 

Sharma et al. [14] does research on thyroid 

disease in which deep learning techniques and feature 

extraction methods are combined. But the exploration of 

how different feature transformation methods affect 

model performance is another gap. Although Mohan et 

al. Vgg-19-LSTMmethod appears to have potential for 

thyroid disease diagnosis, the performance of this 

technique, like all the convolutional techniques, was not 

tested across various datasets [15]. While Brindha et al. 

concentrate on SVM and CNN for diagnosis of thyroid, 

they comment on the advantages of CNN over SVM. 

However, there is a lack of research on evaluating these 

models on different datasets other than the UCI 

repository data [16]. However, while Gupta et al. Vgg-

19-LSTM has the best performance of all the LSPs, there 

is still a gap in research concerning whether it is 

generalizable to different datasets, and whether it is 

robust to changes in the quality of images [17]. Alnaggar 

et al. present a XGBoost-based classifier with good 

accuracy, but the research shortfall comes in evaluating 

the model's performance on different datasets, as well 

as testing the model's scalability [18]. Xie, work on deep 

learning for ultrasound image diagnosis offers 

interesting findings [19]. However, there remains a void 

in terms of addressing challenges unique to thyroid 

ultrasound image diagnosis and putting forward avenues 

for future research. Although Dhamodaran et al. study of 

SVM, KNN, and Naive Bayes for thyroid disease 

classification is thorough, a significant gap in research 

remains in systematically comparing the performance of 

these models across different datasets while accounting 

for the differences in prevalence of disease [20]. 
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3. Proposed Methodology 

 Figure 1 shows the proposed work flow the 

thyroid disease detection model. 

 

3.1. Dataset Description 

The Thyroid Disease Data Set and the 

Mikeizbikiv Database are the two datasets used to 

identify thyroid disorders. 

The content shown in table 1 is gathered from 

the two databases that are open to the public in order to 

predict thyroid diseases is indicated by , where the 

term is considered as and the overall 

quantity of data displayed is indicated by 𝑋. 

3.2. Preprocessing 

3.2.1. Outlier Detection Method Based on Isolated 

Forest 

 The isolated forest algorithm was employed in 

this study to detect outliers. The isolated forest (iForest) 

algorithm is an integrated learning-based unsupervised 

anomaly detection technique that doesn't require prior 

knowledge of the training set's label information [21]. 

The iForest divides the data space, which contains all of 

the samples, into two subspaces along a given 

dimension using a random hyperplane. Each subspace 

only contains a portion of the original data, and it divides 

the two subspaces again in the same manner, repeating 

the process until each subspace has just one datum left.  

 

 

 

 

 

 

Table 1. Description of the gathered dataset used to create the thyroid disease identification model 

Datasets  Online sources Dataset description 

Dataset 1 “https://www.kaggle.com/datasets/yasserhessein/thyroid-

disease-data-set?select=hypothyroid.cs: access date 

2022-12-30” 

 

The "Thyroid Disease Data Set" 

database 1 contains the 

information needed to predict 

thyroid diseases. The data is 

gathered by the Garavan Institute, 

and Ross Quinlan provides the 

documentation. There are 2800 

total data instances, 972 test 

instances, and a large number of 

missing data (29). There is another 

database that has 9172 instances 

and 20 classes. The dataset is in 

the file format hypothyroid.csv and 

has a size of 276.17 KB. 

Dataset 2 “https://github.com/mikeizbicki/datasets/blob/master/csv/

uci/ann-train.data: access data of the link 2022-12-30” 

 

The "mikeizbikiv database," also 

known as database 2, contains the 

information needed to predict 

thyroid disorders. It includes a 

compilation of datasets that are 

openly accessible. Here, basic 

random datasets are stored in csv 

files, restructured datasets are 

stored in graph files, an image file 

stores the histogram's computation 

of RGB signatures, a.gitignore file 

contains improved signature 

support for creating histograms, 

and a README.md file contains 

the first commit. 

Figure 1. Block Diagram 

https://www.kaggle.com/datasets/yasserhessein/thyroid-disease-data-set?select=hypothyroid.cs
https://www.kaggle.com/datasets/yasserhessein/thyroid-disease-data-set?select=hypothyroid.cs
https://github.com/mikeizbicki/datasets/blob/master/csv/uci/ann-train.data
https://github.com/mikeizbicki/datasets/blob/master/csv/uci/ann-train.data
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Only a few partitions are needed to isolate the 

abnormal data points because the density of the 

subspace containing the abnormal data is significantly 

lower than that of the normal data clusters. 

The outlier ratio parameter was set to a low 

value due to the small sample size. Once the parameters 

were set, it looked for outliers on the three data sets. It 

decided to remove the outliers and use the linear 

interpolation method. 

 

3.2.2. Data Normalization 

In order to standardise the data because 

different thyroid data sets had different dimensions, this 

study employed maximum and minimum 

standardisation. 

𝑥∗ =
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
    (1) 

where max denotes the data's maximum value 

and min its minimum value. 

 

3.3. Feature Extraction using Improved AlexNet 

model 

3.3.1. AlexNet Model Structure 

In this paper, the convolution kernel, fully 

connected layer, convolution layer 1, convolution layer 

2, and convolution layer 5 are used after the max pooling 

layer; the thyroid data is utilised as the model's input data 

[22]. 192, 3x3 convolution kernels are used in the third 

convolutional layer, and another 192, 3x3 convolution 

kernel is used in the fourth convolutional layer. 192, 3x3 

convolution kernels are used in the fifth layer of 

convolution, 48, 11x11 convolution kernels are used in 

the first layer, and 128, 5x5 convolution kernels are used 

in the second layer; Lastly, the final classification is 

based on three fully connected layers.  

 

3.3.2. Learning Phase 

The data are sampled to create the training 

dataset during the learning phase: 

(𝑈𝑅𝑥
, 𝑌) =

{(𝑅𝑥
(1)

(𝑁), 𝑦(1)), (𝑅𝑥
(2)

(𝑁), 𝑦(2)) ⋯ , (𝑅𝑥
(𝐾)

(𝑁), 𝑦(𝐾))} 

      (2) 

where 𝑈𝑅𝑥
 symbolises the collection of 𝑅𝑥(𝑁), 𝑌 

symbolises the group of labels 𝑦 , and (𝑅𝑥
(𝐾)

(𝑁), 𝑦(𝐾)) 

represents the training dataset's 𝑘 − 𝑡ℎ  data (𝑘 =

123, … , 𝑘). Furthermore, one-hot encoding is employed 

to encrypt the labels on the data sets used for training 

and validation: 

𝑦(𝐾) = {[1,0]𝑇 , 𝐻1 [0,1]𝑇 , 𝐻0   (3) 

where 𝐻1 represents a PU. Similarly, a 2x1 class 

score vector represents the output of the last fully 

connected layer of the AlexNet model: 

 𝑓𝜃(𝑅𝑥
(𝐾)

(𝑁)) = [𝑓𝜃∣𝐻1
(𝑅𝑥

(𝐾)
(𝑁)) 𝑓𝜃∣𝐻0

(𝑅𝑥
(𝐾)

(𝑁)) ]   (4) 

where 𝑓𝜃(⋅) is the expression that has the model 

parameter for the AlexNet 𝜃  and 𝑓𝜃∣𝐻𝑖
(⋅) is the phrase 

that goes with 𝐻𝑖. In this case, 𝑓𝜃∣𝐻𝑖
(𝑅𝑥

(𝐾)
(𝑁)) shows the 

rating for classification of 𝐻𝑖. 

As a result, the two fictitious probability 

expressions that follow: 

𝑃(𝑦(𝑘) = 1 ∣ 𝑅𝑥
(𝐾)

(𝑁); 𝜃) = 𝑓𝜃∣𝐻1
(𝑅𝑥

(𝐾)
(𝑁)) 𝐻1 𝑃(𝑦(𝑘) = 0 ∣

𝑅𝑥
(𝐾)

(𝑁); 𝜃) = 𝑓𝜃∣𝐻0
(𝑅𝑥

(𝐾)
(𝑁)) 𝐻0      (5) 

where 𝑃(𝑦(𝑘) = 𝑖 ∣ 𝑅𝑥
(𝐾)

(𝑁); 𝜃)  is the likelihood 

conditional on 𝑃(𝑦(𝑘) = 𝑖 ∣ 𝑅𝑥
(𝐾)

(𝑁)) un𝑑𝑒𝑟 𝜃 when 𝑖 = 1 

or 0. 

Consequently, maximizing the conditional 

probability is the goal of the AlexNet model's training, 

specifical 

𝐿(𝜃) = 𝑃(𝑌 ∣ 𝑈𝑅𝑥
; 𝜃) =

∏  𝐾
𝑘=1 (𝑓𝜃∣𝐻1

(𝑅𝑥
(𝐾)

(𝑁)))
𝑦(𝑘)

(𝑓𝜃∣𝐻0
(𝑅𝑥

(𝐾)
(𝑁)))

1−𝑦(𝑘)

  (6) 

To facilitate computation, it present the 

logarithmic function: 

𝑙(𝜃) = 𝑙𝑜𝑔 𝐿(𝜃) = ∑  𝐾
𝑘=1 𝑦(𝑘)𝑙𝑜𝑔 𝑓𝜃(𝑅𝑥

(𝐾)
(𝑁)) + (1 −

𝑦(𝑘))𝑙𝑜𝑔 (1 − 𝑓𝜃(𝑅𝑥
(𝐾)

(𝑁)))        (7) 

It want 𝑙(𝜃) to be as large as possible, that is 

−𝑙(𝜃) to be as tiny as feasible, and the loss function can 

be obtained: 

𝐿𝑜𝑠𝑠𝐽𝐶𝑀−𝐴𝑙𝑒𝑥𝑁𝑒𝑡  (𝜃) = −
1

𝐾
∑  𝐾

𝑘=1 𝑦(𝑘)𝑙𝑜𝑔 (𝑓𝜃∣𝐻1
(𝑅𝑥

(𝑘)
(𝑁))) +

(1 − 𝑦(𝑘))𝑙𝑜𝑔 (𝑓𝜃∣𝐻0
(𝑅𝑥

(𝑘)
(𝑁)))      (8) 

The aim of training an AlexNet is to determine 

which θ would maximise the MAP 𝑃(𝑌 ∣ 𝑈𝑅𝑥
), namely: 

𝜃∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃

 𝑃(𝑌 ∣ 𝑅𝑥
(𝑘)

(𝑁); 𝜃)    (9) 

where 𝜃∗  symbolises the optimal θ under the 

MAP. 

Using Equation (8) as the basis for the loss 

function, it employed the CSA optimisation algorithm to 

gradually adjust the model's parameter θ. This allowed 

the training process to converge, resulting in the optimal 

parameter θ being obtained by the model, and 

ultimately, the trained model, which can be represented 

as: 

𝑓𝜃∗(𝑅𝑥) = [𝑓𝜃∗∣𝐻1
(𝑅𝑥) 𝑓𝜃∗∣𝐻0

(𝑅𝑥) ]    (10) 

where 𝑓𝜃∗(𝑅𝑥)  expresses how the AlexNet 

model was trained following input 𝑅𝑥  and 𝑓𝜃∗∣𝐻𝑖 (𝑅𝑥) 

shows the rating for classification of 𝐻𝑖. 
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3.3.3. Test Statistic Design 

Two MAPs can be produced in accordance with 

the training process outcomes from the previous section, 

as shown by Equations (9) and (10): 

𝑃(𝐻1 ∣ 𝑅𝑥) = 𝑓𝜃∗∣𝐻1
(𝑅𝑥) 𝐻1 𝑃(𝐻0 ∣ 𝑅𝑥) = 𝑓𝜃∗∣𝐻0

(𝑅𝑥) 𝐻0 

      (11) 

The Bayesian theorem allows us to obtain: 

𝑃(𝑅𝑥 ∣ 𝐻1) =
𝑃(𝐻1∣𝑅𝑥)⋅𝑃(𝑅𝑥)

𝑃(𝐻1)
=

𝑓𝜃∗∣𝐻1
(𝑅𝑥)⋅𝑃(𝑅𝑥)

𝑃(𝐻1)
  (12) 

𝑃(𝑅𝑥 ∣ 𝐻0) =
𝑃(𝐻0∣𝑅𝑥)⋅𝑃(𝑅𝑥)

𝑃(𝐻0)
=

𝑓𝜃∗∣𝐻0
(𝑅𝑥)⋅𝑃(𝑅𝑥)

𝑃(𝐻0)
    (13) 

where 𝑃(𝑅𝑥 ∣ 𝐻𝑖)  symbolises the conditional 

likelihood of a specific 𝐻𝑖 , 𝑃(𝑅𝑥) the marginal probability, 

and 𝑃(𝐻𝑖)  represents the training process's prior 

probability of 𝐻𝑖 . When 𝑃(𝑅𝑥 ∣ 𝐻1)  and 𝑃(𝑅𝑥 ∣ 𝐻0)  are 

established, the likelihood ratio (LR) functions superbly 

as a test statistic, as the NP theorem shows. 

In light of the false alarm probability, the 

Neyman-Pearson (NP) theorem states that 𝑃𝑓 = 𝑃(𝐻1 ∣

𝐻0) , to optimise the likelihood of detection 𝑃𝑑 =

𝑃(𝐻1 ∣ 𝐻1), there are: 

𝐿(𝑅𝑥) =
𝑃(𝑅𝑥∣𝐻1)

𝑃(𝑅𝑥∣𝐻0)
> 𝜆      (14) 

where 𝐿(𝑅𝑥) is both the detection threshold and 

the likelihood ratio. 

Equation (14), when Equations (12) and (13) are 

replaced, yields the AlexNet LRT based on the likelihood 

ratio test (LRT): 

𝐿𝐴𝑙𝑒𝑥𝑁𝑒𝑡 (𝑅𝑥) =
𝑓𝜃∗∣𝐻1

(𝑅𝑥)

𝑓𝜃∗∣𝐻0
(𝑅𝑥)

⋅
𝑃(𝐻0)

𝑃(𝐻1)
=

𝑓𝜃∗∣𝐻1
(𝑅𝑥)

𝑓𝜃∗∣𝐻0
(𝑅𝑥)

=

𝑇𝐽𝐶𝑀− 𝐴𝑙𝑒𝑥𝑁𝑒𝑡 > 𝜆       (15) 

where the false alarm probability constraint can 

be used to determine the threshold λ. To facilitate 

analysis, it creates the training datasets 𝐻1  and 𝐻0 

possess an equal quantity of samples, meaning that 

𝑃(𝐻1) = 𝑃(𝐻0) = 0.5; in addition: 

𝑓𝜃∗∣𝐻𝑖
(𝑅𝑥) = 𝑒𝐻𝑖

⋅ 𝑓𝜃∗(𝑅𝑥)    (16) 

𝑒𝐻𝑖
= {[1,0], 𝑖 = 1 [0,1], 𝑖 = 0      (17) 

 

3.3.4. CSA based Hyper parameter Tuning 

 One of the newest metaheuristics is CSA, which 

Braik introduced in 2021. The hunting and food-finding 

processes of chameleons, a highly specialised class of 

animals with the capacity to adjust their colour in order 

to better fit their environment, are modelled by this 

algorithm [23]. Chameleons are omnivores, meaning 

they eat insects and can live in semi-desert regions, 

lowlands, mountains, and deserts [23]. They follow the 

prey with their eyes, track them, and then attack them as 

part of a multi-step food hunting process, as Figure 2 

illustrates. The following subsections provide an 

explanation of this algorithm's mathematical models and 

steps. 

 

 

 

 

 

 

 

 

 

 

 

3.3.4.1 Initialization and Function Evaluation 

By creating an initial population at random, the 

population-based metaheuristic known as CSA initiates 

the optimisation process. A d-dimensional search area 

is used to generate the n-sized chameleon population, 

which is made up of all possible solutions to the 

optimisation problem. Equation (18) describes the 

chameleon's location in the search area at any given 

iteration: 

𝑦𝑡
𝑖 = [𝑦𝑡,1

𝑖 , 𝑦𝑡,2
𝑖 , … . 𝑦𝑡,𝑑

𝑖 ]     (18) 

where 𝑖 = 1,2 … 𝑡  symbolises the number of 

iterations, 𝑦𝑡,𝑑
𝑖  symbolises the chameleon's position. 

Equation (19) demonstrates the process of creating the 

initial population according to the size of the issue as well 

as how many chameleons are in the search region: 

𝑦𝑖 = 𝑙𝑗 + 𝑟(𝑢𝑗 − 𝑙𝑗)    (19) 

where 𝑦𝑖 is the ith chameleon's initial vector, 𝑢𝑗 

and 𝑙𝑗  refer to the search space's upper and lower 

bounds, accordingly, and r is a number from zero to one 

that is uniformly random. Based on the evaluation of the 

objective function, the quality of each step's solution is 

evaluated for each new position. 

 

3.3.4.2 Search of Prey 

Equation (20) establishes a foundation for 

describing the chameleons' movement patterns during 

their search based on how they update their position: 

𝑦𝑡+1
𝑖,𝑗

= {𝑦𝑡
𝑖,𝑗

+ 𝑃1(𝑃𝑡
𝑖,𝑗

− 𝐺𝑡
𝑗
)𝑟2 + 𝑃2(𝐺𝑡

𝑗
− 𝑦𝑡

𝑖,𝑗
)𝑟1 𝑦𝑡

𝑖,𝑗
+

𝜇(𝑢𝑗 − 𝑙𝑗)𝑟3 + 𝑙𝑏
𝑗
𝑠𝑔𝑛 ( 𝑟𝑎𝑛𝑑 − 0.5)𝑟1 < 𝑃𝑝 𝑟1 ≥ 𝑃𝑝   (20) 

wherein 𝑡 and (𝑡 + 1) denotes the 𝑡 th and (𝑡 +

1) th iteration step, accordingly. 𝑖 and 𝑗 represent the 𝑖 

th chameleon in the 𝑗 th dimension. 𝑦𝑡
𝑖,𝑗

 and 𝑦𝑡+1
𝑖,𝑗

 are the 

chameleon's present and new positions, respectively. 

Figure 2. Procedures for CSA 
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𝑃𝑡
𝑖,𝑗

 and 𝐺𝑡
𝑗

 represent the chameleon's optimal and 

worldwide positions, respectively. 

Where, 𝑃1  and 𝑃2  two positive values that 

govern the capacity for exploration. 𝑟1, 𝑟2 , and 𝑟3  are 

generated using random uniform numbers that range 

from 0 to 1. 𝑟𝑖 is a randomly generated integer, uniformly 

generated at index 𝑖, in the interval 0–1. 𝑃𝑝  shows the 

likelihood that the chameleon will perceive prey. 𝑠𝑔𝑛 ( 

rand -0.5) influences how exploration and exploitation 

are carried out, and can be either -1 or 1. 𝜇 is a function 

that grows less as the iteration count increases and 

depends on the iteration’s parameter. 

 

3.3.4.3 Chameleon's Eyes Rotation 

Through the use of their eyes, chameleons can 

determine the location of their prey. They can see the 

prey 360 degrees thanks to this rotating feature [24]. The 

subsequent actions take place as follows: 

● The chameleon's initial position serves as its 

centre of gravity (i.e., the beginning); 

● The rotation matrix is located, revealing the 

location of the prey; 

● The rotation matrix at the centre of gravity is 

used to update the chameleon's position; 

● At last, the chameleons are put back in the 

starting position. 

 

3.3.4.4 Hunting Prey 

When their prey gets too close, chameleons 

attack. The ideal chameleon is the one that is closest to 

the prey and is thought to yield the best results. This 

chameleon attacks its prey with its tongue. Its situation 

is made better by the chameleon's ability to spread its 

tongue to twice its original length. The chameleon is able 

to successfully snatch prey as a result and makes use of 

the pursuit space [24]. Equation (21) provides a 

numerical representation of the chameleon's tongue's 

speed as it extends towards prey: 

𝑣𝑡+1
𝑖,𝑗

= 𝑤𝑣𝑡
𝑖,𝑗

+ 𝑐1(𝐺𝑡
𝑗

− 𝑦𝑡
𝑖,𝑗

) + 𝑐2(𝑃𝑡
𝑖,𝑗

− 𝑦𝑡
𝑖,𝑗

)𝑟2  (21) 

where 𝑣𝑡+1
𝑖,𝑗

 shows the 𝑖 th chameleon's new 

velocity in the 𝑗th dimension of the iteration 𝑡 + 1, and 

𝑣𝑡
𝑖,𝑗

 shows the 𝑖 th chameleon's current velocity in the 𝑗 

th dimension. 

 

3.4. Feature Selection using Hybrid AGTEO 

Optimization 

3.4.1. Optimizer for Artificial Gorilla Troops 

The AGTO emulates the way of life of a group of 

gorillas in the wild. The two processes that make up the 

GTO are the exploration and exploitation processes, 

which are similar to other metaheuristic optimisation 

techniques [25, 26]. The best solution is represented by 

the silverback gorilla, and the gorillas' and candidates' 

locations are denoted by the letters X and GX, 

respectively. The following is a description of the GTO's 

phases [27–29]. 

 

3.4.1.1 Exploration Phase 

Three mechanisms underpin the GTO's 

exploitation phase: gorillas moving into new areas, 

gorillas moving to familiar locations, and gorillas moving 

towards one another. The transitions between these 

motions are adjusted using an adjustable operator (P) in 

the manner described below: 

𝐺𝑋(𝑡 + 1) = (𝑈𝐵 − 𝐿𝐵) × 𝑟1 + 𝐿𝐵 𝐼𝑓 𝑟𝑎𝑛𝑑 < 𝑝         (22) 

𝐺𝑋(𝑡 + 1) = (𝑟2 − 𝐶) × 𝑋𝑟(𝑡) + 𝐿 × 𝐻 𝐼𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5   

    (23) 

𝑋(𝑖) − 𝐿 × (𝐿 × (𝑋(𝑡) − 𝐺𝑋𝑟(𝑡)) + 𝑟3 × (𝑋(𝑡) −

𝐺𝑋𝑟(𝑡))) 𝐼𝑓 𝑟𝑎𝑛𝑑 < 0.5         (24) 

Where; 

 𝐶 = 𝐹 × (1 −
𝑡

𝑇𝑀𝑎𝑥
)         (25) 

𝐹 = 𝑐𝑜𝑠 (2 × 𝑟4) + 1       (26) 

𝐿 = 𝐶 × 𝑙         (27) 

 𝐻 = 𝑍 × 𝑋(𝑡)         (28) 

 𝑍 = [−𝐶, 𝐶]        (29) 

where 𝑈𝐵  is a control variable's upper limit, 

while 𝐿𝐵  is the lower boundary. 𝑟1 , 𝑟2, 𝑟3 , and 𝑟4  are 

arbitrary numbers in [0 − 1] . The value of 𝑙  varies 

between -1 and 1. 

 

3.4.1.2. Exploitation Phase 

The silverback gorilla, the swarm's leader, is 

followed by the male and female gorillas. However, 

backback or young male gorillas replace the silverback 

when it ages or dies begin to struggle for control of the 

females and the leadership position. Two elements are 

used to modify the transition during the exploitation 

phase. The following are the updated gorilla positions if 

𝐶 ≥ 𝑊: 

𝐺𝑋(𝑡 + 1) = 𝐿 × 𝑀 × (𝑋(𝑡) − 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 ) + 𝑋(𝑡)  (30) 

𝑀 = (|
1

𝑁
∑  𝑁

𝑖=1  𝐺𝑋𝑖(𝑡)|
𝑔

)

1

8
    (31) 

𝑔 = 2𝐿      (32) 

If 𝐶 < 𝑊 , the updated gorilla positions are as 

follows: 

𝐺𝑋(𝑖) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 − (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 × 𝑄 − 𝑋(𝑡) × 𝑄) × 𝐴     

   (33) 

𝑄 = 2 × 𝑟5 − 1        (34) 
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𝐴 = 𝛽 × 𝐸        (35) 

𝐸 = {𝑁1, 𝑟𝑎𝑛𝑑 ≥ 0.5 𝑁2, 𝑟𝑎𝑛𝑑 < 0.5      (36) 

𝑟5 is to an arbitrary figure inside [0 − 1]. 𝛽 is set 

in advance. E is an arbitrary number. 

 

3.4.2. The Equilibrium Optimizer 

An effective optimizer that mimics the control 

volume's balance is the EO. The search agents are 

represented by the focus while in the dynamic 

equilibrium state. The mass-balanced equation is 

represented by the following equation: 

𝑉
𝑑𝑐

𝑑𝑡
= 𝑄𝑋𝑒𝑞 − 𝑄𝑋 + 𝐺       (37) 

where 𝑉, 𝑄 , and 𝑋  are the following, in that 

order: volume, flow rate, and concentration. 

𝑋 = 𝑋𝑒𝑞 + (𝐶0 − 𝐶𝑒𝑞)𝑒𝑥𝑝 [−𝜆(𝑡 − 𝑒0)] +
𝐺

𝜆𝑉
(1 −

(𝑒𝑥𝑝 [−𝜆(𝑡 − 𝑒0)]))         (38) 

where 𝜆 = (
𝑄

𝑉
) . 𝑋0  and 𝑒0  are the starting time 

and the initial focus. A vector pool (𝑋𝑝𝑜𝑜𝑙 ) is built using 

the EO technique, comprising the average solution and 

the top four solutions, as shown below: 

𝑋𝑎𝑣𝑔 =
𝑋1+𝑋2+𝑋3+𝑋4

4
       (39) 

𝑋𝑝𝑜𝑜𝑙 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋𝑎𝑣𝑔}       (40) 

The following is the formulation of the EO's main 

equation: 

𝑋 = 𝑋𝑝𝑜𝑜𝑙 + (𝑋 − 𝑋𝑝𝑜𝑜𝑙 ) ⋅ 𝐹 +
𝐺

𝜆𝑉
(1 − 𝐹)    (41) 

Where; 

𝐹 = 𝑎1𝑠𝑖𝑔𝑛 (𝑟 − 0.5)[𝑒−𝜆𝑒 − 1]     (42) 

𝑒𝑜 = (1 −
𝑇

𝑇𝑀𝑎𝑥
)

(𝑎2
𝑇

𝑇𝑀𝑎𝑥
)

     (43) 

𝐺 = 𝐺0𝑒−𝑘(𝑒−𝑒0)      (44) 

𝐺0 = 𝐺𝐶𝑃(𝑋𝑝𝑜𝑜𝑙 − 𝜆𝑋)      (45) 

𝐺𝐶𝑃 = {0.5𝑟1 𝑟2 ≥ 𝐺𝑃 0 𝑟2 < 𝐺𝑃     (46) 

wherein 𝑟  and 𝜆  are two randomly generated 

vectors. 𝑎1  and 𝑎2  are two values for constants that 

were chosen to be, respectively, 2 and 1. 𝑟1 and 𝑟2 are 

arbitrary parameters between 0 and 1. The value of the 

constant GP was chosen to be 0.5. When comparing the 

generated solution to the previous solution in the 

memory-saving step of the EO, if the new solution 

proves to be superior, it is refreshed. 

The tendency of the GTO towards local optima 

and stagnation are its main drawbacks. In this way, the 

phases of the conventional GTO are integrated with the 

EO technique's exploitation and exploration stages to 

enhance the latter's search capabilities. The AGTEO 

that is being presented aims to integrate the EO and 

GTO. The three exploration operators of the GTO 

(motion to a known location, motion to an unknown 

location, and the exploration technique of the EO, which 

is a particle's memory-saving approach), when 

combined, and motion to other gorillas), an excellent 

hybrid AGTOEO is suggested. It can also search 

effectively. Moreover, the suggested hybrid algorithm 

combines the GTO and EO's respective exploitation 

techniques. This includes the GTO's concentration 

updating and the EO's particle motion concerning the 

best solution, or silverback. Notably, the current 

optimisation process iteration is represented by the 

symbol t. Until the stopping criteria are met that is, repeat 

this process until the number of iterations in the current 

iteration equals the maximum number. 

 

3.5.GRU Classification  

A significant problem with fully connected neural 

networks has been effectively resolved by Recurrent 

Neural Network (RNN) development, particularly with 

regard to LSTM networks. The problem is that there is a 

lot of data loss over time or in space in fully connected 

networks, leading to problems with vanishing and 

exploding gradients [30]. The introduction of gates into 

the LSTM network effectively addressed these two 

problems, which are referred to as vanishing and 

exploding gradients. Information flow in an LSTM 

network is regulated and controlled by input, output, and 

forgetting gates. By this breakthrough, the problems 

caused by data loss are addressed by the capacity of 

LSTM to identify and acquire knowledge from 

sequences with extended dependencies. The GRU, 

which is essentially an improved LSTM model, is another 

significant development in this regard. Simpler network 

topology and fewer training parameters are achieved by 

the GRU, while maintaining the training efficacy of 

LSTM. The GRU is therefore better suited to handle 

sequential data, such as LIB charging and discharging 

profiles. One of the GRU update equations' steps, the 

update gate, is shown in Figure 3. 𝑍𝑡 and the reset gate 

𝑟𝑡 are the two key gates at the center of this architecture. 

These gates are crucial for regulating data flow and 

locating data temporal dependencies. 

Essentially, an update gate is a traditional 

recurrent network's combination of input and forgetting 

gates. It chooses which fresh data to include and which 

information from the prior state to keep. The following 

equation (47) displays the 𝑍𝑡 formula: 

𝑍𝑡 = 𝜎(𝑊𝑧 × [ℎ𝑡−1, 𝑋𝑡] + 𝑐𝑧)      (47) 

where 𝑍𝑡is a GRU model's update gate at time 

step 𝑡 that determines the amount of newly added data 

and the amount of the previous hidden state to preserve 

𝜎. Information flow is regulated by Using the activation 

function, values between 0 and 1 are squeezed.  
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The update gate's weight matrix, 𝑊𝑡, determines 

the relative importance of the previous hidden state ℎ𝑡−1 

and input 𝑋𝑡. [ℎ𝑡−1, 𝑋𝑡] is the current input concatenated 

𝑋𝑡  and earlier concealed condition ℎ𝑡−1  to create the 

input of the update gate. 𝑐𝑧 is a term for bias that alters 

the decision boundary of the sigmoid to adjust the gate's 

behavior in equation (47). 

The reset gate is symbolized by 𝑟𝑡, is yet another 

essential part of the design. The amount of the previous 

condition that needs to be reset or erased is set when 

calculating the current state. Through adjusting the 

memory reset, 𝑟𝑡 enables the network to interpret data 

and identify pertinent patterns and dependencies while 

keeping or discarding specific details from earlier time 

steps. The equation for 𝑟𝑡  is displayed as follows in 

equation (48): 

𝑟𝑡 = 𝜎(𝑊𝑟 × [𝑋𝑡 , ℎ𝑡−1] + 𝑐𝑟)   (48) 

wherein 𝑟𝑡  The amount of the previous hidden 

state that (the reset gate) defines ℎ𝑡−1 to reset or neglect 

when utilizing the current input to compute the fresh 

concealed state at each time step 𝑡, 𝑋𝑡. By squeezing the 

weighted sum of the input along with the earlier 

concealed state, the sigmoid activation function 𝜎 

ensures that 𝑟𝑡  accepts values in the range of 0 to 1, 

regulating the quantity of reset necessary in Equation 

(48). 

 

4. Results and Discussions 

4.1. Experimental Setup 

The efficacy of the DL models was evaluated 

using the WEKA 3.8.6 environment. A data mining 

programme called WEKA is under the GNU General 

Public Licence. Data preparation, visualisation, and 

more are just some of the many features it offers 

alongside its extensive model library. 

The subsequent parameter of a individual 

system was used to behaviour the assessment: 

Processor: Intel(R) Core (TM) i7-97250H CPU 

@ 2.60 GHz;  

Memory: 16 GB; 

OS: Windows 10 Home, 64-bit 

CPU based on the x64 instruction set 

 

4.2. Performance Metrics 

The performance metrics used for comparing 

the outcomes of the recommended strategy. They 

include the F-score, Precision, Sensitivity, Accuracy, 

Specificity, and Negative Predictive Value (NPV). These 

criteria are used to measure the recommended model's 

categorization performance. The letters "FN", "FP", 

"TN", and "TP" in the table stand for "false negative", 

"false positive", "true negative", and "true positive", 

respectively.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃𝐸𝐶) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (49) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸𝑁) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (50) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (51) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (52) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
      (53) 

In the validation results for feature selection in 

table 2 and figure 4, the HAGTEO-GRU model 

consistently outperforms other methods in terms of a 

variety of evaluation metrics on both Dataset 1 and 

Dataset 2. More importantly, HAGTEO-GRU reaches 

the highest accuracy percentages 98.0681 % and 

98.00424 %, respectively of correct classifications on 

Figure 3. The basic structure of a GRU 
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Dataset 1 and Dataset 2 respectively, proving its ability 

to correctly classify cases of thyroid disease. In addition, 

the model performs well in terms of sensitivity, 

specificity, precision and F1-Score, two measures of 

correctly picking positive cases, and two of avoiding 

false positives, respectively. It is remarkable that 

HAGTEO-GRU always outperforms alternative models 

like SMO-GRU, SLO-GRU, IAOA-GRU and HAGTSO-

GRU, in terms of all performance metrics. Additionally, 

the low FPR and FNR values affirm the model's 

proficiency in minimizing misclassifications. Taken as a 

whole, these results point up the effectiveness of 

HAGTEO as a feature selector, making it a promising 

and reliable choice for thyroid disease detection in 

clinical practice. 

When all the classification results from 2 

separate datasets are compiled in a comprehensive 

analysis as shown in table 3 and figure 5, the proposed 

model, HAGTEO-GRU, demonstrates a clear 

performance advantage in thyroid disease detection. On 

Dataset 1, HAGTEO-GRU gives an outstanding 

accuracy of 98.0681 %, beating offerings such as LSTM, 

1D-CNN, IAOA-EL, and HAGTSO-HDL. In particular, 

HAGTEO-GRU proves to be highly sensitive, specific 

and precise, being able to accurately isolate positive 

samples while at the same time reducing both false 

positives and false negatives. Its F1-Score and MCC 

values show the ability of the model to select the features 

well and perform feature classification, which further 

highlight the model's balanced performance. On Dataset 

2, HAGTEO-GRU maintains its high standard of 

excellence with an accuracy of 98.00424%, beating 

other models in all of the various evaluation metrics. 

These consistently high precision, recall, and F1-Score 

demonstrate HAGTEO-GRU's stability in dealing with 

various datasets. These results all attest to the utility of 

the proposed model, HAGTEO-GRU, as a promising 

and reliable instrument for thyroid disease detection. Its 

efficacy in contributing to higher accuracy in clinical 

diagnosis is of considerable significance. 

 

Table 2. Effectiveness evaluation of the developed GRU-based thyroid disease prediction model among 

various Meta heuristic algorithms  

Performance analysis on dataset 1 

Validation measures SMO-GRU SLO-GRU IAOA-GRU HAGTSO-GRU HAGTEO-GRU 

Accuracy 92.4369 93.68152 96.30613 97.1762 98.0681 

Sensitivity 92.51644 93.71687 96.28845 97.1369 98.1456 

Specificity 92.39714 93.66385 96.31496 97.03076 98.1234 

Precision 85.17459 88.08872 92.89004 94.23869 95.1432 

FPR 8.502863 6.336162 3.585049 2.869249 1.987622 

FNR 8.383563 6.283138 3.611558 2.763204 1.896574 

NPV 92.39714 93.66385 97.31496 98.03076 98.86721 

FDR 15.72541 11.91128 7.009975 5.661318 4.547643 

F1-Score 87.69211 90.81566 94.55872 95.6659 96.1287 

MCC 0.81311 0.861028 0.91799 0.934737 0.94342 

Performance analysis on dataset 2 

Accuracy 91.46341 92.68293 93.69035 94.48567 98.00424 

Sensitivity 91.43924 92.70325 93.67998 94.48433 98.01235 

Specificity 91.75258 92.43986 93.81443 94.50171 97.90722 

Precision 99.25164 99.32287 99.45105 99.51588 99.8342 

FPR 8.247423 7.560137 6.185567 5.498283 3.072783 

FNR 8.560758 7.296754 6.320023 5.515657 2.787646 

NPV 91.75258 92.43986 93.81443 94.50173 96.90721 

FDR 0.748363 0.677131 0.548948 0.484112 0.2657 

F1-Score 95.18541 95.89896 96.47929 96.93488 98.35443 

MCC 0.622022 0.657389 0.692603 0.720902 0.826832 
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Table 3. Performance estimation of the developed GRU-based thyroid disease detection 

technique among distinct conventional thyroid disease detection algorithms 

Dataset 1 

Validation measures LSTM 1D-CNN IAOA-EL 

HAGTSO-

HDL 

HAGTEO-

GRU 

Accuracy 91.40156 92.00247 96.30612 97.0661 98.0681 

Sensitivity 91.4369 92.1527 96.28844 97.1368 98.1456 

Specificity 91.38388 91.92736 96.31495 97.03075 98.1234 

Precision 84.14247 85.0918 92.89003 94.23868 95.1432 

FPR 8.615119 8.072641 3.685048 2.969247 1.987622 

FNR 8.563297 7.847296 3.711559 2.863203 1.896574 

NPV 91.38388 91.92736 96.31495 97.03075 98.86721 

FDR 15.85753 14.9082 7.109974 5.761317 4.547643 

F1-Score 87.63817 88.48161 94.55871 95.6658 96.1287 

MCC 0.812286 0.825248 0.91798 0.934736 0.94342 

Dataset 2 

Accuracy 91.59597 92.02235 91.9141 97.00424 98.00424 

Sensitivity 91.53415 92.04432 91.87015 97.01235 98.01235 

Specificity 92.09522 91.75658 92.43986 96.90722 97.90722 

Precision 99.28649 99.27551 99.31677 99.7342 99.8342 

FPR 7.90368 8.247223 7.560137 3.092784 3.072783 

FNR 8.445649 7.957583 8.129848 2.987647 2.787646 

NPV 92.09522 91.75458 92.43986 96.90722 96.90721 

FDR 0.716311 0.743394 0.68323 0.2658 0.2657 

F1-Score 95.26129 95.51249 95.44844 98.35445 98.35443 

MCC 0.625424 0.63453 0.636473 0.826832 0.826832 

Figure 4. Feature selection evaluation 
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Figure 5. Classification validation 

Figure 6. ROC of RNN 

Figure 7. Confusion matrix of RNN 
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Figure 8. Model loss and model accuracy of RNN 

Figure 9. ROC of Proposed GRU model 

Figure 10. Confusion matric of proposed GRU model 

Figure 11. Model loss and model accuracy of proposed GRU model 
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The Scope of proposed GRU model versus 

current RNN model in comparative analysis this paper 

examines the most illuminating performance metrics 

through ROC curves, confusion matrices, and model 

loss-accuracy plots. The ability of the RNN to distinguish 

true positive from false positive rates is depicted in 

Figure 6, which shows the corresponding ROC curve. At 

the same time, you can compare the proposed GRU 

model directly with Figure 9: its ROC curve. More 

importantly, the proposed GRU model has a better ROC 

curve, which is not only more sensitive but also more 

specific than the RNN. Confusion matrices for the RNN 

and the proposed GRU model are given in Figures 7 and 

10, respectively. These matrices give a global 

perspective of the models' performance across all the 

classes. The proposed GRU model performs 

consistently better than the RNN at classifying 

examples. This is apparent in the higher values along 

the diagonal, which represent correct predictions. 

Training results over epochs for the RNN and the 

proposed GRU model are presented in figures 8 and 11, 

respectively. The model suggested in the results section 

converges to lower loss values and higher accuracy 

faster, thus proving its efficiency in learning and 

generalizing patterns from the dataset. In sum, these 

visualizations emphasize the superior performance of 

the proposed GRU model relative to the standard RNN 

model. The ROC analysis input, confusion matrices, and 

training plots, altogether point to the increased 

discriminative power, accuracy, and efficiency of the 

proposed GRU model in the face of thyroid disease 

detection. These findings highlight the promise of GRU 

for being a high-level and powerful classifier that can 

help improve diagnostic accuracy in clinical situations. 

 

5. Conclusion 

This paper presents a comprehensive model for 

thyroid disease detection, encompassing state-of-the-art 

techniques from data preprocessing to feature 

extraction, selection, and classification. The 

methodology addresses diagnostic challenges in thyroid 

disease with a focus on enhancing efficiency and 

accuracy. Initial preprocessing involves outlier detection 

using Isolated Forest and normalization to ensure a 

clean, standardized dataset. Integration of these steps 

ensures the reliability of subsequent stages. Feature 

extraction employs the powerful AlexNet architecture 

augmented with an improved Chameleon Swarm 

Algorithm (CSA) to identify subtle data structures, 

enhancing feature discrimination. Deep learning is 

utilized for its efficacy in handling complex, high-

dimensional data. Feature selection employs a 

HAGTEO optimization approach, combining Artificial 

Gorilla Troops Optimizer (AGTO) and Equilibrium 

Optimizer (EO) to reduce dimensionality and enhance 

classification effectiveness. The Gated Recurrent Unit 

(GRU) classifier leverages temporal relationships for 

precise disease classification. Comprehensive testing 

on two datasets demonstrates high accuracy (98.0681% 

and 98.00424% for dataset 1 and dataset 2 

respectively), outperforming traditional methods. 

However, limitations include potential biases in the 

datasets and generalization ability. Future research 

directions could involve exploring additional advanced 

deep learning architectures, incorporating diverse 

datasets, and conducting real-world clinical trials to 

further refine and expand the proposed framework. 
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