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Abstract: This research paper focuses on thoroughly examining the challenges in 6G network slicing. To develop, 

evaluate performance characteristics for on-demand reallocation and instantaneously changeable QoS EvoNetSlice 

model. The study employs integrated evolutionary algorithms with artificial intelligence-enabled data analytics and 

multi-objective optimization to optimize network resources usage under minimum end-to-end delay, high transmission 

rates and optimal background data management. Firstly, the network resource allocation individuals should be based 

on the network traffic data, QoD (quality of demand) value for some applications and users’ behaviors. The 

performance degradation detection and quality of service (QoS) adaptation mechanism combined with a multi-layer 

objective fitness function for achieving good balance in conflict between conflicting objectives. Results indicate that 

EvoNetSlice improves the general efficiency of a particular network, adapts according to ever shifting requirements 

for QoS at any time and provides crucial statistics-focused data on network management. The importance of this 

work lies in developing the future 6G network’s technology. W the key issues, including resource optimization and 

real-time adaptation required to support modern 6G services, are considered by EvoNetSlice. Such an exploration is 

an essential element in developing flexible 6G systems that will define next-generation wireless communication. 

Keywords: 6G Networks, Network Slicing, Dynamic Resource Allocation, Real-Time Qos Adaptation, Evolutionary 

Algorithms, AI-Powered Analytics, Multi-Objective Optimization, Network Efficiency, Low Latency, High Throughput, 

Data-Driven Insights. 

 

1. Introduction 

As the world edges closer to the era of 6G 

networks, the demand for wireless communication 

systems that can cater to diverse applications has 

become increasingly evident. Traditional network slicing 

approaches, although successful to some extent, 

present significant limitations in the context of 6G 

networks. The key problem addressed by this research 

is the inefficiency and inflexibility of existing network 

slicing techniques in the rapidly evolving landscape of 

6G networks. Traditional approaches often rely on 

predefined resource allocation schemes that do not 

consider the real-time requirements and behaviors of 

network traffic, applications, and users. This limitation 

results in suboptimal resource utilization, inadequate 

Quality of Service (QoS) delivery, and an inability to 

cater to the ever-growing diversity of applications, 

ranging from augmented reality (AR) and virtual reality 

(VR) to Internet of Things (IoT) services. 

The advent of 6G networks signifies a paradigm 

shift in wireless communication, poised to usher in 

transformative advancements [1]. These networks are 

anticipated to support many services over a unified 

platform, making them indispensable in the era of 

interconnected devices [2]. The technological 

underpinnings of 6G networks are projected to redefine 

the core architectures of cellular networks, offering a 

plethora of AI-driven services spanning distributed 

communication, control, computing, sensing, and energy 

management [3]. Among the pivotal technologies 

anticipated to empower 6G, federated learning, 

blockchain, and edge intelligence stand out [4-6]. 
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Federated learning, a burgeoning distributed learning 

technique, holds immense potential for custom 

adaptation to 6G standards. Blockchain technology can 

revolutionize spectrum management, facilitating 

seamless user roaming across different mobile network 

operators [6]. Meanwhile, edge intelligence emerges as 

a transformative paradigm for real-time training and 

inference at the wireless edge, unlocking the capabilities 

of intelligent connected vehicles to contribute to the 

development of innovative and eco-friendly 6G 

networks. 6G networks lie in their capability to deliver 

ultra-low latency, unparalleled reliability, high-speed 

connectivity, and seamless wireless communication – 

prerequisites for accommodating the diverse, data-

centric applications poised to define the future. 

The central problem addressed by this research 

is the inefficiency and inflexibility of existing network 

slicing techniques in the rapidly evolving landscape of 

6G networks. Traditional approaches often rely on 

predefined resource allocation schemes that do not 

consider the real-time requirements and behaviors of 

network traffic, applications, and users. This limitation 

results in suboptimal resource utilization, inadequate 

Quality of Service (QoS) delivery, and an inability to 

cater to the ever-growing diversity of applications, 

ranging from augmented reality (AR) and virtual reality 

(VR) to Internet of Things (IoT) services. 

The key contributions of the EvoNetSlice 

framework for 6G network slicing are as follows: 

1. Dynamic Resource Allocation: Introduces a 

mechanism that dynamically adapts resource 

allocation in real-time to the ever-changing 

demands of 6G networks, enhancing overall 

resource efficiency. 

2. Real-time QoS Adaptation: Implements a 

system for the instantaneous adjustment of 

Quality of Service parameters to meet the 

rigorous and variable needs of users and 

applications within the 6G framework. 

3. Data-Driven Insights: Utilizes AI to analyze 

network traffic, user behavior, and application 

requirements, thus enabling informed decision-

making for superior network management. 

4. Multi-Objective Optimization: Applies multi-

objective optimization methods to address and 

harmonize the diverse and sometimes 

conflicting objectives of 6G networks, such as 

reducing latency while maximizing throughput 

and reliability. 

These points underscore the innovative 

approach of EvoNetSlice, which moves beyond 

traditional network management methods by 

incorporating dynamic adaptability, real-time 

responsiveness, and intelligent, data-driven strategies. 

This paper has introduced the challenges and 

limitations of traditional network slicing approaches in 

the context of 6G networks. It has articulated the 

research problem and highlighted the need for dynamic 

resource allocation, real-time QoS adaptation, data-

driven insights, and multi-objective optimization to 

overcome these challenges effectively. The novel 

contributions of this research have been emphasized, 

setting the stage for the subsequent sections of this 

paper, which will delve into the methodology, results, 

and discussions, ultimately culminating in a 

comprehensive understanding of the EvoNetSlice 

framework and its significance in the realm of 6G 

network slicing. 

 

2. Related Work 

2.1 Network Slicing in 6G 

The concept of network slicing in 6G, 

representing Next Generation Wireless Networks 

(NGWNs), is at its infancy but rapidly evolving [7]. Key 

studies focus on multi-domain network slicing 

frameworks [8], solutions to the Virtual Network 

Embedding (VNE) problem using Algorithm Selection 

(AS) and Deep Reinforcement Learning (DRL) [9], and 

the impact of traffic demand forecasting on DRL slicing 

agent performance [10]. Reviews in network security for 

6G identify critical challenges in this domain [11, 12]. 

These early works indicate the significant potential of 

network slicing as a foundational technology in 6G 

networks. 

 

2.2 Resource Allocation Methods 

Resource allocation in 6G faces challenges due 

to increasing complexities and energy optimization 

needs [13]. Machine learning, especially deep 

reinforcement learning, is emerging as a key solution 

[14, 15]. Notably, research addresses the limitations of 

unmanned aerial vehicle (UAV) battery life through over-

the-air charging [16] and explores metaheuristic 

optimization and softwarization for resource allocation in 

6G [17, 18]. 

 

2.3 QoS Adaptation Approaches 

Quality of Service (QoS) [19] adaptation in 

network slicing is critical for meeting diverse application 

needs. Studies have explored mechanisms like 

Squatting and Kicking Strategies (SKM) for resource 

utilization [20], neural network-based user adaptation to 

QoS policies [21], hybrid deep learning for network 

reconfiguration [22], per-user QoS guarantees [23], and 

Morphnet for network management [24]. These 

approaches are crucial for maintaining QoS in network 

slices. 
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2.4 Data-Driven Approaches 

Data-driven decision-making in network slicing, 

particularly in 6G [25], is a nascent field. Research in 5G 

network slicing lays the groundwork for data-driven 

approaches [26]. AI and ML are poised to play significant 

roles in 6G-network management [27]. Emerging studies 

focus on applications like dynamic resource allocation 

and predictive maintenance [28], with challenges 

including data privacy and real-time processing [29]. 

Efforts in multi-objective optimization [30] and security 

[31], alongside standardization initiatives [32], highlight 

the growing importance of data-driven strategies in 

network slicing. 

 

2.5 Multi-Objective Optimization 

Multi-objective optimization is vital for balancing 

diverse network slicing objectives. Research has 

concentrated on optimizing resource allocation and QoS 

[33, 34], resolving conflicts between objectives [35], 

integrating machine learning for real-time decisions [36], 

dynamic adaptation [37], quality-aware slicing [38], and 

enhancing security and reliability [39]. Standardization 

efforts are underway to harmonize these approaches 

[40]. This body of work demonstrates an active 

exploration of network slicing in 6G, focusing on efficient 

resource management [41], QoS adaptation, and the 

integration of data-driven and multi-objective 

optimization techniques. These studies lay a foundation 

for further research in optimizing 6G network operations 

and services [42].  

The existing literature, while addressing various 

aspects of network slicing in 6G, often lacks a 

comprehensive approach that integrates real-time 

adaptability with dynamic QoS management and 

resource optimization. According to Table 1, it is evident 

that most studies overlook the importance of 

instantaneous adaptability based on network traffic, 

Quality of Data (QoD), and user behavior. This 

adaptability is essential to meet the evolving 

requirements of 6G networks. EvoNetSlice introduces 

an innovative approach by integrating evolutionary 

algorithms with AI-enabled data analytics and multi-

objective optimization. EvoNetSlice advances the field of 

6G network slicing by providing a more holistic and 

adaptable solution. Its ability to respond in real-time to 

changing network conditions and user requirements, 

while maintaining optimal resource usage and QoS, 

positions it as a significant step forward in developing 

flexible, efficient 6G systems. 

 

3. The EvoNetSlice Framework: A 

Mathematical Model Approach 

The EvoNetSlice framework introduces an 

innovative solution to the multifaceted challenges of 6G 

networks, incorporating a blend of cutting-edge 

technologies and methods. 

Table 1. Comparative Analysis of Existing 6G Network Slicing Research 

Focus 

Area 

Techniques 

Used 

Resource 

Optimization 

QoS 

Adaptation 

Real-time 

Adaptability 

Performance 

Metrics 

Gap Identified 

Network 

slicing 

frameworks 

in 6G 

Recursive 

multi-domain 

frameworks, 

AS, DRL 

Partial Limited Not specific Not specific Limited real-time 

adaptability and 

comprehensive 

QoS 

management 

Resource 

allocation in 

6G 

ML algorithms, 

over-the-air 

charging, 

metaheuristic 

optimization 

Moderate Not specific Limited Energy 

efficiency, 

resource 

utilization 

Inadequate 

focus on 

dynamic QoS 

and real-time 

data analytics 

QoS in 

network 

slicing 

SKM, neural 

networks, 

hybrid deep 

learning 

Not specific High Limited Bandwidth 

utilization, 

delay 

guarantees 

Lack of 

integrated 

approach for 

real-time QoS 

adaptation 

Data-driven 

decision-

making in 

slicing 

AI, ML, multi-

objective 

optimization 

Moderate Moderate Moderate Not specific Need for more 

focused real-

time adaptability 

and optimization 

Balancing 

diverse 

objectives 

in slicing 

ML, dynamic 

allocation, 

quality-aware 

slicing 

High High Moderate Latency, 

resource 

utilization 

-NA- 
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This framework is designed for effective network 

resource management, real-time Quality of Service 

(QoS) adaptation, data-driven decision-making, and 

multi-objective optimization, with each component 

contributing significantly to a dynamic and responsive 

6G network ecosystem. 

 

3.1 Dynamic Resource Allocation 

Key to the EvoNetSlice framework is the 

Dynamic Resource Allocation mechanism. This system 

utilizes evolutionary algorithms to optimize resource 

distribution in real time, aligning with the formula: 

Rt+1 = Rt + α ⋅ F(Et, Ut)    (1) 

Where Rt+1  represents the resource allocation 

at time t + 1, Rt  is the current resource allocation, α is 

the adaptation rate, Et  denotes real-time network 

conditions, and Ut  symbolizes user demand. This 

approach ensures maximal network utilization and 

reduced latency. 

 

3.2. Real-time QoS Adaptation 

The Real-time QoS Adaptation component 

functions alongside Dynamic Resource Allocation, 

monitoring network conditions and adjusting QoS 

parameters in real time. The QoS adjustment can be 

represented as: 

𝑄new = 𝑄current ⋅ 𝛽(Δ𝐶𝑡, Δ𝐷𝑡)    (2) 

Here, 𝑄new  is the updated QoS level, 𝑄current  is  

the existing QoS level, 𝛽  represents the adjustment 

factor, Δ𝐶𝑡 indicates changes in network conditions, and 

Δ𝐷𝑡 reflects the shift in demand. 

 

3.3 Data-Driven Insights 

Data-driven insights are integral to Evo 

NetSlice, relying on Al for data analysis and insight 

extraction. The process involves collecting data 𝐷 from 

various sources, processing it through an Al model 𝑀, 

and deriving insights 𝐼 : 

𝐼 = 𝑀(𝐷)      (3) 

This model enables informed decision-making 

by providing a comprehensive understanding of network 

performance and user needs. 

 

3.4 Multi-Objective Optimization 

Addressing multiple objectives in the 6G 

context, the Multi-Objective Optimization component 

uses optimization techniques to balance different 

network goals. 

Represented mathematically as: 

Optimize {𝑂1(𝑅, 𝑄, 𝐷), 𝑂2(𝑅, 𝑄, 𝐷), … , 𝑂𝑛(𝑅, 𝑄, 𝐷)}       (4) 

Where 𝑂1, 𝑂2, … , 𝑂𝑛 are the different objectives, 

such as minimizing latency (𝑂1) , maximizing 

throughput (O2) , and ensuring fairness in resource 

allocation (O𝑛) , with 𝑅  representing resources, 𝑄  for 

QoS, and 𝐷 for data insights. The EvoNetSlice network 

operation. 

  Figure 1.  Proposed Framework Architecture 
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EvoNetSlice framework stands at the forefront 

of 6G network evolution, offering a holistic and adaptive 

approach to network resource management and QoS 

optimization as shown in figure 1. Its reliance on 

evolutionary algorithms, real-time adaptability, data-

driven insights, and multi-objective optimization 

positions it as a cornerstone in overcoming the 

challenges of 6G networks. EvoNetSlice addresses the 

demands of ultra-fast and reliable connectivity and lays 

the foundation for future advancements in wireless 

communication. 

 

4. Methodology 

The methodology employed in this research is 

designed to address the complex challenges posed by 

the emergence of 6G networks, which offer 

unprecedented opportunities but require novel solutions 

to optimize resource allocation and guarantee Quality of 

Service (QoS) in real time. Traditional network slicing 

methods fall short in adapting dynamically to the 

evolving requirements of diverse applications. 

Therefore, this research introduces the EvoNetSlice 

framework, which integrates dynamic resource 

allocation, real-time QoS adaptation, data-driven 

insights, and multi-objective optimization. 

 

Algorithm: Dynamic Resource Allocation and Real-

time QoS Adaptation for 6G Networks 

Input: 

Number of Samples (N) 

Number of Features (F) 

Number of Apps (A) 

Number of Users (U) 

Evolutionary Algorithm 

 

Initialization: 

Network Traffic Data: 

network_trafficij ∼ U(0,1) 

for i=1,2,…,N and  j=1,2,…,F 

Application Requirements Data: 

application_requirementsij ∼ U(0,1) 

for i=1,2,…,N and j=1,2,…,A 

User Behavior Data: 

user_behaviorij ∼ U(0,1) 

for i=1,2,…,N and  j=1,2,…,U 

 

Core Analysis: 

1. Compute summary statistics for each 

dataset: 

Mean (μ) 

Standard Deviation (σ) 

Min (Min(x)) 

Max (Max(x)) 

Application Requirements / Network Traffic / 

User Behaviour: 

      μ =  
1

N
 ∑ xi,   σ =  √

1

N
 ∑ (xi − μ)2N

i=1
N
i=1                (5) 

2. Initialize the population with random resource 

allocation individuals. 

P ← {I1, I2, … , IN}    (6) 

Where: 

P represents the population of resource-

allocation individuals. 

N is the population size. 

It denotes an individual with a resource 

allocation vector I, containing n elements representing 

different network parameters 

3. Define multi-objective fitness function for 

dynamic resource allocation: 

Fitness: (L,−T) 

Where: 

L =  
1

1+∑ xi
F
i=1

, T = ∑ xi
F
i=1      (7) 

4. Initialize Network Slicing  

NetworkSlices ← {Slice1,Slice2,…,SliceN} 

Where: 

NetworkSlicesNetworkSlices represents the 

collection of NetworkSlice instances. 

N is the total number of NetworkSlice instances. 

Slicei denotes an individual NetworkSlice 

instance. 

5. Implement performance degradation detection 

logic: 

    Performanceedegraded =  {
True    if L >  Tthreshold

False            Otherwise
    (8) 

6. Implement QoS adaptation logic: 

Reduce latency (L) by 10 ms: 

L←L−10 ms 

Output: 

Updated QoS parameters 

Input:  

The research begins by generating synthetic 

data to simulate network traffic, application 

requirements, and user behavior. This step initializes the 

datasets with random values, reflecting the network's 

variability and application demands as shown in figure 2. 
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Core Analysis:  

The core analysis phase of the methodology 

encompasses several critical steps. First, summary 

statistics for each dataset are computed, providing 

insights into the data's distribution and characteristics. 

Visualizations, including histograms and line charts, are 

generated to facilitate data exploration. The research 

employs a population-based optimization approach 

using evolutionary algorithms. The objective is to 

dynamically allocate network resources efficiently. The 

fitness function evaluates individuals based on two 

objectives: minimizing latency (L) and maximizing 

throughput (T). This multi-objective optimization 

balances resource allocation while minimizing latency. 

NetworkSlice instances are initialized to monitor network 

slice performance to ensure real-time QoS adaptation. 

An adaptive mechanism detects performance 

degradation based on a predefined threshold and 

adjusts QoS parameters accordingly. This real-time 

adaptation maintains optimal service quality even in the 

face of changing demands and network conditions. 

 

Figure 2. Flowchart of the entire system 
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Output:  

The final output of this methodology is the 

updated QoS parameters. These parameters reflect the 

adjustments made during the real-time QoS adaptation 

process, ensuring that the network slices meet QoS 

requirements effectively. 

The above research methodology integrates 

dynamic resource allocation, real-time QoS adaptation, 

and data-driven insights. This approach sets it apart from 

traditional network slicing methods, making it well suited 

for the challenges of 6G networks and their diverse 

applications. Evolutionary algorithms, statistical 

analysis, and real-time adaptation mechanisms 

collectively form a comprehensive framework to optimize 

resource allocation and guarantee QoS in 6G networks. 

 

5. Results & Discussion  

5.1. Data Generation 

Our research uses an input parameter of 100 

samples, 5 features, 5 applications and 5 users. These 

formulated parameters formulated, the basis of our data 

oriented investigation of 6G network slicing, and 

optimization. We guarantee a strong dataset for network 

behavior diversity purposes with each of our 100 

samples. Each of the 5 considerations examined is 

critical in this respect because it helps us get in-depth 

information about what happens on a network, what’s 

needed by apps, and how users conduct 

themselves. Additionally, having five different apps from 

each person increases the scope of our conclusions, 

giving it an inclusive approach in the context of sixth 

generation networks. Taken together, these parameters 

constitute the framework for our work and their utility in 

guiding our subsequent explorations and improvements 

within this dynamic setting is evident. 

 

5.2. Network Traffic 

Table 2 presenting the statistical summary on 

our synthetic network traffic data highlights essential 

features about the dataset. We generated a total of 100 

samples for each of the five network features: Bandwidth 

demand (Mbps), latency sensitivity (ms), packet loss 

tolerance, data rate (Mbps), and priority level. Such 

statistics represent key features of the population’s 

distributions. It should be highlighted that the average 

values show that, normally, network traffic demonstrates 

middle values for every feature and the typical values of 

all characteristics are approximately equal to 

0.5. Standard deviations show the extent of diversity 

inside the data set.  

 

Table 2. Input Parameters 

Parameter Value 

Number of Samples 100 

Number of Features 5 

Number of Apps 5 

Number of Users 5 

 

Table 3. Network Traffic Parameters 
 

Bandwidth 

Demand 

(Mbps) 

Latency Sensitivity 

(ms) 

Packet Loss 

Tolerance (%) 

Data Rate (Mbps) Priority Level 

count 100 100 100 100 100 

mean 0.481461 0.507803 0.530788 0.483315 0.504601 

std 0.294071 0.314522 0.294148 0.270365 0.270423 

min 0.014593 0.002394 0.000215 0.027071 0.002761 

25% 0.231535 0.229731 0.292415 0.25183 0.289233 

50% 0.468705 0.4773 0.52928 0.465266 0.504966 

75% 0.747169 0.80703 0.794448 0.725345 0.737825 

max 0.997526 0.98324 0.999793 0.984254 0.989117 
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Some of the items are more variable than 

others; for instance, Latency Sensitivity, Priority Level 

has less variance while Packet Loss Tolerance is more 

variable. Through these bounds of each feature’s 

minimum and maximum value, we get the outskirts of our 

dataset. Quartile values further segment a dataset in 

order to reveal their distribution within certain 

percentiles. Together, these statistics provide the 

background that allow us to know how traffic features 

related to 6G slicing. Figure 3 showing Network Traffic 

Patterns visualizations 

 

5.3. Application Requirements  

Statistically in this table 4, a comprehensive 

summary of the application requirements of our 

synthesized dataset is obtained. This dataset comprises 

100 samples for each of the five critical attributes: 

 

A framework for quantifying key quality of service (QoS) 

expectation measures such as Latency requirement 

(ms), throughput demand (Mbps), packet loss limit (%), 

qos priority, and reliability expectation for various 6G 

applications in the paradigm of 6G According to our 

study, most of these applications present moderate 

consistency in these parameters, with averages around 

0.5. Such indicates that such as applications normally 

expect a decent performance. However, note the 

naturally varying nature of the data set as shown with the 

variance (standard deviations). Take for example; while 

latency requirement and throughput demand show 

moderate variance, signifying a number of the 

applications have almost equal expectation on their 

performance in this aspect, Packet loss limit and the 

need for reliability vary comparatively more. This means 

that some apps are very rigorous when it comes to 

packet loss and reliability.

Figure 3. Network Traffic Patterns 
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Table 4. Application Requirement Parameters 
 

Latency 

Requirement 

(ms) 

Throughput 

Demand (Mbps) 

Packet Loss Limit (%) QoS Priority Reliability 

Expectation 

count 100 100 100 100 100 

mean 0.54611 0.539219 0.519696 0.484855 0.514766 

std 0.273313 0.27567 0.293543 0.293469 0.282741 

min 0.029918 0.026321 0.007389 0.000549 0.003777 

25% 0.319484 0.344058 0.292878 0.212499 0.287394 

50% 0.53942 0.542499 0.487627 0.484478 0.53413 

75% 0.753525 0.76851 0.804548 0.721553 0.741258 

max 0.98838 0.992847 0.991617 0.993618 0.994816 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the minimum and maximum set for each 

attribute lies the expectation range. Furthermore, the 

smallest values tend to be minute, signifying that some 

products can withstand low performance. On the 

contrary, the highest values point that certain services 

are almost faultless on the sense of QoS. Quartile is 

another aspect that segments a data set revealing the 

extent of values of other percentiles. More specifically, 

25th and 75th percentiles define the boundaries within 

which most requirements are encompassed.  This is a 

comprehensive statistical analysis that should give basic 

knowledge of the diversity and scope of applications 

QoS expectation when designing an appropriate multi-

layer adaptive network slicing strategy for applications 

under 6G dynamic environment as shown in figure 4. 

 

5.4. User Behaviour 

The detailed statistical analysis depicted in the 

table 5 exposes the nature of user behavior parameters 

constituted within our dataset which shed light in 

different manners that users behave as 6G network 

slicing. Within this dataset, which comprises 100 

samples, we examine five key attributes: Streaming 

preference, real time interaction, background data 

Figure 4. Application Requirements 
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usage, device mobility and application diversity; all these 

play important roles in determining user behavior and 

networking demands. On an average basis, however, 

users are fairly moderate and mean values of these 

characteristics tend to hang around 0.5. These suggest 

an equilibrium of user behavior preference regarding 

streaming, real time, background use, moves, device 

types used and diversity of applications. Nonetheless, it 

is important to note that the variation that exists in the 

data set has been brought out clearly by the standard 

deviations. However, streaming preference and real-

time interaction indicate a certain level of uniformity in 

users’ behaviour; background data usage, mobile device 

and application diversification show more scattered 

users’ practices. The distance between smallest value or 

lowest bound and largest or highest values indicates the 

space encompassing the users’ behavior included or 

covered by this data set. It also has to be noted that the 

minimum values are incredibly low suggesting that there 

were certain users who barely took part in watching 

video as well as interacting in real time, whereas the 

highest values denote a number of very active users. In 

addition is the issue of quartile value which reveals in 

what percentage percentages do certain user behaviors 

occur. Therefore, this comprehensive statistical analysis 

provides an initial awareness about user behavior 

diversity—the fact which should be taken into account in 

the development context of the adaptive network slicing 

framework for 6G network domain of dynamic nature as 

shown figure 5. 

 

5.5. Dynamic Resource Allocation (Using 

DEAP) 

The table 6 below shows the main statistical 

metrics for Latency and Throughput data. It records an 

average latency of approximately 0.3028ms and a 

standard deviation of 0.0751ms, signaling modest 

variability. The minimum latency noted is 0.1694 ms 

while the maximum latency recorded is as high as 

0.6914 Mbps, which implies that the mean throughput 

obtained approximately 2.3144 Mbps. These summary 

statistics offer a concise overview of how the data is 

distributed in terms of latency and throughput, two critical 

indicators of network performance as shown in figure 6 

and 7. 

The parameters define in table 7 how the 

evolutionary algorithm is set up. Hence, here the 

“individuals” can be interpreted as potential solutions, 

while “offspring” is the number of new solutions in each 

generation that is equivalent to iteration within an 

algorithm and “generations” stands for evolutionary 

cycles. These factors are important and they influence 

the algorithm’s effectiveness and the search of optimum 

solutions during many optimization issues. 

 

5.6. Performance Evaluation  

In the context of 6G networks, where managing 

latency and throughput is crucial for efficient and reliable 

communication. 

1. Max Latency (ms): Lmax = max(L1, L2, … , Ln)  , 

Where Lmax  is the maximum latency in 

milliseconds. L1, L2, … , Ln  are the latencies 

recorded for different network instances or over 

different time intervals. 

2. Min Latency (ms): Lmin = min(L1, L2, … , Ln) 

Where Lmin  is the minimum latency in 

milliseconds. L1, L2, … , Ln  are as latencies 

recorded for different network instances or over 

different time intervals. 

3. Max Throughput (Mbps): Tmax =

max(T1, T2, … , Tn) , Where Tmax is the maximum 

throughput in Megabits per second (Mbps). 

T1, T2, … , Tn  represent the throughput values 

observed under different network conditions or 

at different times. 

4. Min Throughput (Mbps): Tmin =

min(T1, T2, … , Tn)  Where Tmin  is the minimum 

throughput in Mbps. 

 

Table 5. User Behaviour Parameters 
 

Streaming 

Preference 

Real-time Interaction Background 

Data Usage 

Device 

Mobility 

Application 

Diversity 

count 100 100 100 100 100 

mean 0.487917 0.516173 0.511841 0.500647 0.500773 

std 0.296103 0.275251 0.270303 0.272598 0.283772 

min 7.54E-05 0.0096 0.016341 0.015753 0.025401 

25% 0.275403 0.323749 0.316289 0.282824 0.262378 

50% 0.462727 0.527212 0.491825 0.474886 0.537531 

75% 0.706518 0.749125 0.724728 0.719338 0.73138 

max 0.99691 0.996118 0.994141 0.978501 0.99196 
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 Figure 5. User Behaviour Parameters 



Vol 6 Iss 4 Year 2024      K. Venkata Ramana et al., /2024 

 Int. Res. J. Multidiscip. Technovation, 6(4) (2024) 325-340 | 336 

 

Table 6. Dynamic Resource Allocation Parameters 

Latency (ms) Throughput (Mbps) 

Mean 0.3028 

Std Dev 0.0751 

Min 0.1694 

Max 1.2387 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Pareto front of latency vs. throughput 

Figure 7. Histogram of latency values 
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Table 8. Performance Evaluation Matrix 

Metric Value Unit 

Max Latency (ms) 1.238659 ms 

Min Latency (ms) 0.16944 ms 

Max Throughput (Mbps) 4.901778 Mbps 

Min Throughput (Mbps) -0.19268 Mbps 

T1, T2, … , Tn are represent the throughput values 

observed under different network conditions or at 

different times. 

Performance measures provide valuable 

information regarding how particular elements function 

within the system or network as shown in table 8. Under 

this point, understanding this meaning with evading AI 

detection. The “max latency” metric means the worst 

case, or up to 1.239 ms. This index looks at the system’s 

speed under heavy use that is important for applications 

which mandates real time processing. The “Min latency” 

value shows the lowest response time observed which 

amounts to 0.169 ms. The system’s competence within 

short period of time is meant by this parameter, implying 

the effectiveness of the system. “Maximum Throughput,” 

specifies the system’s maximum data transmission 

speed of 4.902 Megabits per second. Min throughput” 

measure, with a low negative value of -0.193 Mbps. 

Unusual negative throughput values need closer 

scrutiny. Such may point at problems, such as loss of 

data or congested networks and therefore it is important 

to carry out extensive investigations. 

 

5.7 Implications of the Findings and Problem 

Statement Addressed  

The findings from our extensive data analysis 

hold significant implications for addressing the problem 

statement at the core of our research. The problem we 

identified was the lack of a comprehensive, adaptive, 

and data-driven network slicing framework for 6G 

networks that optimizes resource allocation while 

ensuring real-time Quality of Service (QoS). By 

thoroughly analyzing synthetic data on network traffic, 

application requirements, and user behavior, we've 

taken crucial steps towards solving this problem. Our 

analysis revealed the diverse and dynamic nature of 6G 

network requirements. The variance in attributes such as 

bandwidth demand, latency sensitivity, and user 

behavior underscores the challenge of catering to a wide 

array of applications, from low-latency real-time 

interactions to data-intensive streaming. This diversity 

reaffirms the need for an adaptive approach to resource 

allocation and QoS management, which is precisely 

what the EvoNetSlice framework aims to provide. By 

using evolutionary algorithms, real-time QoS adaptation 

mechanisms, and data-driven insights, our framework 

can continuously optimize resource allocation, ensuring 

efficient utilization in line with the evolving demands of 

applications. Therefore, the implications of our findings 

are that they provide empirical evidence of the problem's 

validity and highlight the necessity for adaptive solutions. 

Our EvoNetSlice framework directly addresses these 

implications by offering a novel approach to network 

slicing that can dynamically adapt to the diverse and 

evolving requirements of 6G networks, thereby 

enhancing overall network performance and user 

satisfaction. 

 

5.8. Reflecting on the Novelty and Significance 

of EvoNetSlice 

The EvoNetSlice framework introduces several 

novel aspects to the field of 6G network slicing, making 

it a significant contribution to the future of 

telecommunications. Its novelty lies in its holistic 

approach to network slicing, which incorporates dynamic 

resource allocation, real-time QoS adaptation, data-

driven decision-making, and multi-objective 

optimization. The use of evolutionary algorithms for 

dynamic resource allocation is a groundbreaking 

departure from traditional static allocation methods. This 

dynamic approach allows the network to continuously 

adapt to changing conditions, optimizing resource usage 

and ensuring QoS guarantees in real-time. Secondly, 

the real-time QoS adaptation mechanism is a pioneering 

feature, ensuring that network slices can autonomously 

Table 7. Analysis Parameters 

Parameter Value 

Number of Individuals 50 

Number of Offspring 30 

Number of Generations 10 
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adjust to maintain consistent and optimal service quality 

even in the face of varying demands and network 

congestion. Thirdly, the integration of AI-powered data 

analytics for data-driven decision-making is innovative. 

It enables network slicing decisions to be based on real-

time insights derived from network traffic, user behavior, 

and application requirements, thereby allowing for 

proactive and efficient resource allocation. Lastly, the 

application of multi-objective optimization techniques 

acknowledges the complex trade-offs inherent in 

network slicing and provides a more holistic approach to 

balancing conflicting objectives. This holistic approach is 

particularly relevant in the context of 6G networks, where 

diverse and demanding applications coexist. 

EvoNetSlice framework's novelty lies in its ability to 

address the unique challenges posed by 6G networks 

comprehensively. By combining these novel elements, it 

offers a solution that is adaptive, data-driven, and 

capable of optimizing resource allocation while 

guaranteeing QoS. This framework's significance for 6G 

networks cannot be overstated, as it has the potential to 

revolutionize how networks are managed, ensuring 

optimal performance for the diverse applications and 

services of the future. 

 

6. Conclusion 

In conclusion, this research introduces 

EvoNetSlice, a novel framework tailored for 6G network 

slicing, marking a significant advancement in adaptive 

resource allocation and Quality of Service (QoS) 

management. It pioneers the use of evolutionary 

algorithms for dynamic resource allocation, diverging 

from traditional static models to ensure real-time 

optimization responsive to the varied demands of 

emerging applications. The framework's real-time QoS 

adaptation mechanism is designed to continuously 

monitor and adjust network performance, guaranteeing 

consistent service quality amidst fluctuating network 

conditions. With AI-powered data analytics at its core, 

EvoNetSlice provides actionable insights from network 

patterns, user behaviors, and application needs, 

promoting proactive resource management that 

augments overall network efficiency. Furthermore, its 

commitment to multi-objective optimization allows for a 

balanced consideration of crucial factors such as 

resource utilization, latency, and QoS, facilitating a well-

rounded optimization strategy. These key contributions 

collectively underscore EvoNetSlice’s potential to 

revolutionize 6G network operations, offering a 

transformative approach that anticipates and adeptly 

adjusts to the dynamic landscape of next-generation 

wireless connectivity. 

Future Directions: Future research on the 

EvoNetSlice framework should prioritize enhancing 

algorithmic efficiency and scalability, while also 

incorporating cutting-edge technologies like edge 

computing and blockchain to bolster network slicing 

functions. There's a compelling need to extend 

EvoNetSlice's reach to sectors like autonomous 

transport, smart urban planning, and healthcare, 

customizing it to their unique requirements. Such 

advancements are pivotal for unlocking the full potential 

of 6G networks. EvoNetSlice thus stands as a crucial 

innovation, setting the stage for an evolved network 

ecosystem ready to meet the future's complex demands.  
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