
 
 
 
 
 

 

 Int. Res. J. Multidiscip. Technovation, 6(3) (2024) 77-89 | 77 

 

R
E

S
E

A
R

C
H

 A
R

T
IC

L
E

 

 

 

D
O

I:
  1

0
.5

4
3

9
2

/
ir

jm
t2

4
3

6
 

INTERNATIONAL RESEARCH JOURNAL OF 

MULTIDISCIPLINARY TECHNOVATION 

A Novel Approach for Surveillance Compression using Neural 

Network Technique 

Nikita Mohod a, b, Prateek Agrawal a, c, *, Vishu Madan a  

a School of Computer Science and Engineering, Lovely Professional University, Punjab-144411, India 
b Department of Computer Science and Engineering, Sipna College of Engineering and Technology, Amravati, Maharashtra-

444701, India  
c Faculty of Engineering and Technology, SGT University, Gurugram, Haryana-122505, India 

* Corresponding Author Email: dr.agrawal.prateek@gmail.com  
DOI: https://doi.org/10.54392/irjmt2436  

Received: 23-11-2023; Revised: 30-03-2024; Accepted: 08-04-2024; Published: 23-04-2024 

 
Abstract: The integration of closed-circuit television (CCTV) monitoring is crucial in the field of video processing, 

which provides an efficient method for comprehensive surveillance. However, a key challenge associated with this 

practice is its substantial demand for storage space. Typically, surveillance footage is stored in hard disk drives, and 

due to limited storage spaces, it is deleted after some time. To address this issue, an innovative method for 

compressing CCTV video, named object detection-based surveillance compression (ODSC), is introduced. Our 

ODSC model is divided into two steps: -i) depending upon the objects in the video, determine the significant and non-

significant frames of surveillance video using the neural network approach YOLOv5s & YOLOv7-tiny and Yolov8s ii) 

construct the video of significant frames. Following a comprehensive analysis of the experimental outcomes, it is 

noted that YOLOv8s stands out with a remarkable detection accuracy of 99.7% on the COCO dataset. Our ODSC 

approach is reducing the storage space greatly and achieving an average compression ratio of up to 96.31% using 

YOLOv8s, which surpasses the existing state-of-the-art methods. 

Keywords: Significant Frames, Non-Significant Frames, Object Detection, YOLOv5, YOLOv7, YOLOv8 and 

Surveillance Compression 

 

1. Introduction 

CCTV holds paramount importance in modern 

security and surveillance. Acting as vigilant electronic 

eyes, CCTV systems provide continuous monitoring in 

various settings, from public spaces to private properties 

[1]. Their presence deters criminal activities, aids in 

crime detection, and enhances overall safety [2]. In 

businesses, institutions, and public areas, CCTV serves 

as a crucial deterrent against theft and misconduct. The 

ability to capture real-time footage and the potential for 

retrospective analysis make CCTV an invaluable tool for 

ensuring the security of people and assets [3]. In an era 

where safety is a top priority, CCTV plays an 

indispensable role in bolstering surveillance measures 

[4]. With this increasing number of CCTV cameras and 

devices, the volume of data generated through CCTV 

cameras continues to grow, and the need for efficient 

storage and transmission becomes paramount. Due to 

the limited space, saving CCTV footage often proves 

challenging, leading to the deletion of surveillance 

footage at set intervals. However, this deletion results in 

the loss of significant content. To preserve this valuable 

data for longer durations, the implementation of efficient 

surveillance compression techniques becomes 

imperative [5]. 

Video compression is a technique used to 

reduce the size of video files without significantly 

compromising the quality of the content. It is crucial for 

efficient storage, transmission, and streaming of videos. 

Compression is achieved by eliminating redundant or 

unnecessary information in the video, resulting in a more 

compact representation of the data. There are two main 

types of video compression: lossy compression and 

lossless compression [6]. In lossless compression, the 

size of the video file is reduced without any loss of video 

quality. It ensures that the original video data can be 

perfectly reconstructed from the compressed version. 

Lossless compression relies on encoding techniques 

that focus on eliminating redundant data and minimizing 

data duplication without discarding any information [7]. 

While, lossy compression aims to significantly reduce 

the file size by selectively discarding data that is 

considered less essential, thus accepting some 

degradation in video quality. The trade-off between 

quality and compression ratio is a key aspect of lossy 

compression. Lossy compression employs a range of 

techniques to achieve compression, including 
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quantization, subsampling, filtering, intra-prediction, 

inter-prediction, and the removal of perceptually less 

important details. H.265 [8] or High-Efficiency Video 

Coding (HEVC), is a popular lossy compression 

technique that works on the principles of quantization, 

motion compensation, estimation, transform coding, and 

entropy coding.  

Video compression is accomplished through 

various techniques that exploit redundancies in video 

data. One fundamental method involves reducing spatial 

redundancy, where similarities between neighboring 

pixels are identified and encoded more efficiently, 

optimizing storage [9]. Temporal redundancy reduction 

is achieved by storing only the differences between 

successive frames, exploiting the consistency in motion 

between frames. Transform coding, such as the Discrete 

Cosine Transform, converts video signals from spatial to 

frequency domains, enabling the quantization of 

transformed coefficients and the removal of less critical 

information. Entropy coding further reduces the bit rate 

by assigning shorter codes to frequently occurring 

patterns. These methods collectively ensure that video 

data is represented in a more compact form without 

compromising essential visual information. Additionally, 

the development of deep learning (DL) models, 

particularly autoencoders, has introduced innovative 

approaches to compression. These models, with 

encoder and decoder networks, learn spatial and 

temporal features automatically, allowing for more 

adaptive and efficient compression [10]. The integration 

of deep learning in video compression holds promise for 

achieving higher levels of efficiency, adaptability, and 

perceptual quality in the representation of video content. 

 

1.1 Motivation and Approach 

In this research work, the compression of 

surveillance video using the concept of content-aware 

compression is performed. The Automated Teller 

Machine (ATM) video footage is a pertinent case study 

for our research investigation. The CCTV cameras 

installed within ATM rooms continuously capture video 

content, forming a continuous, round-the-clock 

surveillance feed. However, the substantial periods of 

activity, primarily related to ATM transactions, make up 

only a fraction of the total recording duration. The rest of 

the footage predominantly captures the static state of the 

ATM itself. This situation leads to the inefficient use of 

storage resources, as a significant portion of the 

recorded content lacks relevance or serves a non-

significant purpose in the surveillance context. To tackle 

this issue, this article presents deep learning-based 

object detection methods to identify frames where 

human presence is detected. Subsequently, we 

separate the identified significant segments, 

representing human interactions at the ATM, from the 

non-significant segments portraying the static ATM 

environment. Frames in the surveillance video where a 

person is present are recognized as significant frames, 

while frames with the firmed ATM are considered non-

significant parts. Figure 1 denotes the sample of 

significant frames and non-significant frames. Later on, 

the compressed video is constructed using significant 

frames.  This process greatly reduces storage space 

requirements by eliminating the storage of redundant or 

inconsequential video content. The result is enhanced 

efficiency in the management of surveillance video, 

intentionally retaining pertinent, significant portions for 

extended durations, while selectively deleting non-

significant segments. The major contribution of our 

research work is summarized as follows: - 

1) Gathering surveillance footage from 

nationalized bank ATMs and dividing the video 

into a short interval from 10 minutes (Min) To 40 

Min. 

2) Splits the video into frames using the OpenCV 

library. 

3) Employing a neural network approach to 

distinguish between significant and non-

significant frames in the surveillance video and 

determine the best network depending on 

evaluation metrics. 

4) Used the significant and non-significant frames 

of the best network. Discard the non-significant 

frames and reconstruct the video using the 

identified significant frames. 

Figure 1. Samples frames of ATM surveillance (a) non-significant frame (b) Significant frame 
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The subsequent structure of the paper is as 

follows: Section 2 presents a thorough review of relevant 

literature in the realms of object detection and video 

compression, offering valuable insights into the current 

research landscape within these domains. 

Section 3 elaborates on our proposed ODSC 

approach, delineated into two modules: i) the object 

detection module and ii) the video compression module. 

The ensuing Section 4 is dedicated to presenting and 

delving into a comprehensive analysis of the resuls 

obtained. Lastly, Section 5 synthesizes our findings, 

culminating in conclusive insights drawn from our 

research. 

 

2. Literature Survey 

This section deals with the popular deep 

learning (DL) based object detection framework and 

video compression approaches. 

 

2.1. DL-based object detection 

The field of computer vision has seen notable 

progress in object detection (OD), a pivotal task, 

especially with the advent of deep learning techniques. 

OD aims to identify the objects and their location within 

images or video frames. Unlike image classification, 

which determines the presence of a single object 

category in an entire image, OD detects multiple objects 

of varying classes and accurately delineates their 

boundaries with bounding boxes [11]. Traditional 

approaches to OD relied on handcrafted features and 

machine learning algorithms like Support Vector 

Machines or Haar cascades. These methods often 

required manual feature engineering and struggled with 

complex scenarios [12]. 

The advent of deep learning revolutionized 

object detection, notably with the introduction of 

Convolutional Neural Networks (CNN) [11]. Neural 

network-based OD is divided into two approaches (i) 

region-based (two-stage) and (ii) region-free (one-stage) 

[12]. In 2014 Girshick et al. introduced region-based OD 

named RCNN which is pioneering of two-stage OD 

framework [13]. To recognize objects, the RCNN 

framework is divided into two parts. In the first part, it 

proposes regions of interest (RoIs) within an image using 

selective search, and in the second part, RoIs are 

individually processed through a CNN to extract 

features, followed by classification and bounding box 

regression to detect objects. R-CNN achieves high 

accuracy but is computationally intensive. Fast R-CNN 

mitigated the computational inefficiencies and intricacies 

of R-CNN wh ile notably enhancing object detection 

accuracy. In contrast to the R-CNN approach of 

employing distinct CNN for individual proposed regions, 

Fast R-CNN integrates feature extraction across all 

regions while retaining the use of selective search for 

region proposals [14]. 

Though Fast RCNN overcomes the limitation of 

RCNN, still the network is slow due to the use of a 

selective search approach for region proposals. To 

address this, Ren et. al. present Faster-RCNN which 

introduces a Region Proposal Network (RPN) that 

shares convolutional layers with the subsequent 

detection network, enabling the model to generate 

region proposals and perform object detection 

simultaneously [15]. Faster RCNN uses the anchor box 

method, to detect and locate objects at various scales 

with different aspect ratios which improves the detection 

accuracy of the network. He et al. developed spatial 

pyramid pooling (SPP) which addresses the challenge of 

variable input sizes in CNN by enabling them to accept 

images of different dimensions. This layer divides the 

input feature map into a grid and applies pooling 

operations independently within each grid cell. It then 

concatenates the pooled features from all grid cells into 

a fixed-length vector, which can be fed into subsequent 

layers for classification or detection tasks [16]. To handle 

objects at multiple scales, Lin et. al. introduced a feature 

pyramid network (FPN) in OD [17]. FPN employs a top-

down architecture, where it fuses features from different 

layers of a CNN. This fusion process generates a 

hierarchical pyramid of features, with higher-level 

features containing semantic information and lower-level 

features providing finer details.  

In 2017, He et al. presented Mask-RCNN which 

is an extension of Faster R-CNN. It integrates an 

additional branch for pixel-level segmentation masks 

alongside OD [18]. Mask-RCNN employs a ResNet-

50/101 as the backbone network for feature extraction, 

RPN for candidate object proposals, and a mask head 

for predicting segmentation masks, to enable precise 

instance segmentation. This region-based OD 

approaches excel in complex scenarios but suffers from 

computational complexity and slower inference speeds 

compared to region-free techniques [12].  

The demand for real-time OD led to the 

development of single-shot detectors [19]. You Only 

Look Once (YOLO) and Single Shot Multi-Box Detector 

(SSD) are prominent real-time detectors. Redmon et. al 

presents You Only Look Once (YOLO) [20]. YOLO 

divides the image into a grid and predicts bounding 

boxes and class probabilities which makes it faster and 

more suitable for real-time applications [20]. Liu 

developed a single-shot detector (SSD) to perform OD 

in a single forward pass through a CNN. It utilizes a set 

of default bounding boxes or "priors" of various sizes and 

aspect ratios, referred as anchor boxes [21]. These 

anchor boxes are pre-defined to cover a range of object 

sizes and shapes [19]. In 2017, Redmon et. al. 

introduced YOLOv2, to detect the smaller objects in an 

image [22]. Yolov2 incorporates batch normalization, 

anchor boxes, and a finer grid for better localization 

accuracy. YOLOv3 is the third iteration of the YOLO 

model and introduced further improvements in terms of 

accuracy and detection speed [23]. It uses FPN, to 
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improve its ability to detect objects across different 

scales. YOLOv3 is generally considered to be more 

accurate than YOLOv2, but it requires more 

computational resources [24]. To determine objects in 

surveillance video YOLO version exhibits better 

accuracy [25, 26]. To enhance the accuracy and speed 

of the detection model in real-time YOLOv4 marks 

success. It incorporates advanced features such as the 

CSPDarknet53 backbone and PANet, enhancing the 

model's capability to detect objects with high precision 

across various scales. Overall, YOLO has evolved from 

its initial concept to become one of the most popular and 

influential OD frameworks, continually pushing the 

boundaries of speed, accuracy, and efficiency in real-

time object detection tasks. Hence, in our research 

paper variants of YOLO are used to differentiate 

significant and non-significant frames of ATM 

surveillance video. 

 

2.2. DL-based video compression 

DL-based video compression represents a 

burgeoning field of study poised to enhance 

compression efficiency and quality. Traditional methods 

like H.264 and H.265 have constraints, prompting 

exploration into deep learning alternatives [27-28]. 

Traditional methods consist of inter-prediction, intra-

prediction, sampling, coding optimization, and filtering 

techniques [28].   To improve the traditional techniques, 

researchers apply CNN, Recurrent Neural Networks 

(RNN), and autoencoders, including Variational 

Autoencoders (VAEs) and Generative Adversarial 

Networks (GANs) to video compression frameworks and 

bolster compression efficiency. 

In H.265, despite featuring 35 intra-prediction 

modes, there's a limitation in capturing the deeper 

spatial information between the current and its 

neighboring blocks. To address this issue Cui et. al. 

integrates CNN with H.265 [29]. Inter-frame prediction 

estimates the motion compensation (MC) and motion 

estimation (ME) between two consecutive video frames 

to eliminate duplication towards the temporal axis and 

also determines video compression efficiency. Lin et al. 

integrate GAN with MC and ME to predict the next frame 

using a previously compressed frame [30].  To obtain 

final coded bits traditional methods used discrete cosine 

or sine cosine transform in H.265 and H.264 due to 

which the quality of compressed video reduces. To 

enhance this, Zhang et al. introduced implicit dual 

domain CNN (IDCNN) to reduce the artifacts in 

compressed video [31]. To improve the rate distortion of 

video, Bouurtsoulatze et. al. present deep pre-coding for 

video distribution. Here, a multi-scale pre-coding CNN 

downscales high-resolution frames over many scale 

factors and is trained to reduce post-processing and 

blurring artifacts caused by typical linear up-scaling 

filters. Before encoding, an adaptive pre-coding mode 

selection algorithm is proposed, which adaptively 

determines the best resolution. In this way, the neural 

network is combined with traditional approaches to 

achieve better compression. 

While few researchers have tried to perform 

compression in an end-to-end manner. Lu et. al. used an 

optical flow module to obtain the motion information 

between the current frame and the previous compressed 

frames for each frame to be compressed [32]. A trained 

network performs MC to produce a prediction signal for 

the current frame. Two auto-encoders are used to 

compress. the prediction residues and motion 

information, respectively.  

 

2.3. DL-based Surveillance video compression 

The rapid use of CCTV cameras over recent 

decades, emphasizes its widespread adoption for 

surveillance purposes. As surveillance cameras have 

become essential for safety and security, there has been 

an expansion in video parameter space, including higher 

spatial resolutions, frame rates, and dynamic ranges. 

Consequently, there's a considerable increase in the 

storage space required to accommodate this higher-

quality footage. Hence, a domain-specific compression 

technique to store significant data while minimizing 

storage space usage is required. 

Zonglei et. al. introduces a deep compression 

technique that employs object detection to differentiate 

moving and stationary objects in apron surveillance 

videos. Extracted object images, their positions, and 

background images are stored in a linked list. During 

decompression, objects are restored to the background, 

maintaining original video details, and significantly 

reducing storage space [33]. Wu et. al. presents a 

method to compress foreground and background parts 

of surveillance 

An adaptive background updating and 

interpolation module improves the compression ratio by 

sharing background information among adjacent frames 

to achieve foreground compression, a motion-based 

approach with residual encoding is used [34]. 

Ghamsarian et. al. introduced a novel approach for 

cataract surgery video compression, by detecting and 

compressing relevant frames containing instrument 

actions separately from irrelevant frames using CNN 

[35]. Matha et. al. proposed a relevance-based 

compression scheme, informed by clinician input, which 

achieves up to 95.94% storage reduction witH.264/AVC 

and up to 98.82% with AV1, excluding idle phases [36]. 

 

3. ODSC Model 

This section outlines the ODSC model which is 

divided into two steps: - 1) the object detection module 

and ii) the compression module. Figure 2 represents the 

proposed ODSC model. The use case for the ODSC 

model is ATM surveillance video, so the surveillance 
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video is divided into the frames using OpenCV library, 

and frames are given as input to the OD module. The 

working details of the modules are explained in the 

following subsections. 

 

3.1 Object Detection Module 

To predict the significant and non-significant 

frames of ATM surveillance video, we used YOLOv5s, 

YOLOv7-tiny, and YOLOv8s from a one-stage detector 

which are summarized as follows. 

 

3.1.1 YOLOv5s 

In 2020, Ultralytics presented YOLOv5s, an 

object detection algorithm in several variants, which 

includes YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x, differ in terms of model size and 

computational requirements.  For the ODSC model, 

YOLOv5s is used. It has CSPDarknet53 architecture as 

the backbone network which extracts features from the 

input image. It Uses FPN to capture features at different 

scales which helps in detecting objects of varying sizes 

within an image. Neck architecture fuses features from 

various network levels, improving its ability to detect 

objects at multiple scales. The detection head comprises 

three detection scales, each predicting bounding boxes, 

object probabilities, and class probabilities. This 

architecture enables YOLOv5s to efficiently process 

entire images for rapid and accurate object detection. 

Figure 3 denotes the architecture of the YOLOv5s 

framework. 

In YOLOv5, the loss function consists of three 

main components: localization loss, objectness loss, and 

classification loss. Localization loss used smooth L1 loss 

function denoted in equation 1, where x is the difference 

between the predicted value and the target value. 

𝐿𝐿𝑜𝑐(𝑥) = {
0.5𝑥2, 𝑥 < 5

|𝑥| − 0.5,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (1) 

Objectness loss and classification loss used 

binary cross-entropy (BCE), where pi predicted 

objectness score, tiis the true objectness score and Nobj 

is the total number of anchor boxes shown in equation 2. 

𝐿𝑂𝑏𝑗/𝐿𝐶𝑙𝑠 = −
1

𝑁𝑜𝑏𝑗
∑ [𝑡𝑖 log 𝑝𝑖 + (1 − 𝑡𝑖) log(1 − 𝑝𝑖)]

𝑁𝑜𝑏𝑗

𝑖=0
    (2) 

The overall loss is determined using equation 3, 

which is a weighted sum of these individual losses, with 

different weights assigned to maintain a balance during 

training. 

𝐿 = 𝐿𝐿𝑜𝑐 + 𝐿𝑂𝑏𝑗 + 𝐿𝐶𝑙𝑠        (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. ODSC model overview 

Figure 3. YOLOv5s framework 
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3.1.2 YOLOv7 

In 2023 Wang et al. introduced YOLOv7, a 

popular and efficient OD algorithm that detect and 

classify objects in images and videos [37]. 

Researchers developed fundamental models 

tailored for different GPU settings, categorizing them as 

YOLOv7-tiny for edge GPUs, YOLOv7 for regular GPUs, 

and YOLOv7-W6 for cloud GPUs. YOLOv7 uses a 

modified YOLOv3 architecture as its backbone, but it 

incorporates several architectural improvements to 

enhance detection accuracy and speed. The 

architecture comprises several key elements, including 

compound scaling, the extended efficient layer 

aggregation network (EELAN), a collection of useful 

enhancements through planned and reparameterized 

convolution, coarseness for auxiliary loss, and fineness 

for primary loss. The trainable bag-of-freebies approach 

improves detection accuracy without incurring additional 

inference costs. It also focuses on the re-

parameterization module which replaces the original 

module and the dynamic label assignment strategy 

which manages the assignment of labels to different 

output layers is a key aspect in improving object 

detection techniques.  This approach performs stack 

scaling to the neck component and utilizes the proposed 

compound scaling method to increase the depth and 

width of the entire model, resulting in YOLOv7-X. Figure 

4 represents the architecture of the YOLOv7 model. 

 

3.1.3 YOLOv8 

In 2023, Ultralytics again presented YOLOv8 a 

region-free OD framework that consists of several key 

components: an input segment, a backbone, a neck, and 

an output segment [38]. The input segment is 

responsible for pre-processing the input image. It applies 

mosaic data augmentation, adaptive anchor calculation, 

and adaptive grayscale padding to enhance the input 

data. The backbone network and neck module form the 

core structures of YOLOv8. The backbone network 

processes the input image using Conv and C2f modules 

to extract feature maps at different scales. It incorporates 

the ELAN structure from YOLOv7 [37], reducing one 

standard convolutional layer and enhancing gradient 

flow through the Bottleneck module. This approach 

maintains lightweight characteristics while capturing 

more gradient flow information. The output feature maps 

Figure 4. YOLOv7 framework 

Figure 5. YOLOv8s framework 
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are processed by the SPPF module, which employs 

pooling with varying kernel sizes to combine feature 

maps effectively. Finally, the results are passed to the 

neck layer for further processing. The neck layer of 

YOLOv8 is designed to improve the model's feature 

fusion capability by incorporating the FPN along with the 

Path Aggregation Network (PAN) structure like YOLOv5. 

This combination enables better integration of features 

from different scales and enhances the model's ability to 

capture contextual information across the entire image. 

The detection head of YOLOv8 adheres to the standard 

approach of dividing the classification head from the 

detection head. This process includes performing loss 

computation and filtering out target detection boxes. The 

loss calculation consists of two main parts: classification 

and regression, with the Objectness branch excluded. 

For classification, BCE loss is utilized, while Distribution 

Focal Loss (DFL) is employed for regression. Figure 5 

represents the YOLOv8s framework. 

 

3.2 Video Compression Module 

In the compression module of the ODSC 

framework, the output of the OD module is used to 

perform compression.  

Compression is achieved by selectively 

preserving the frames deemed significant in surveillance 

videos and discarding those considered non-significant. 

Here, ATM surveillance is a use case; where the 

significant frames encompass the duration when an 

individual enters, performs transactions, and exits the 

ATM room, while frames depicting a static, unoccupied 

ATM are considered nonessential and thus excluded to 

facilitate compression. This determination is based on 

the observation that, within a 24-hour cycle, only a few 

hours involve activity, while the majority of videos 

contain firmed ATM. To address this inefficiency, the 

ODSC framework eliminates non-significant segments 

from the surveillance video, allowing for the retention of 

important frames over extended periods while significant 

frames are utilized to construct the compressed video 

 

3.3 Algorithm and Sequence flow diagram 

The sequence flow diagram (SFD) of the ODSC 

model is shown in Figure 6. Here, the framework is 

divided into the following steps: - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. SFD of ODSC model 
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1 In the first step, the frame per second (FPS) 

value of the input surveillance video is 

calculated. Later, depending on the value of 

FPS frames of surveillance is saved. 

2 The ODSC model used YOLOv5s, YOLOv7-

tiny, and YOLOv8 modules, to detect the objects 

in the surveillance video. 

3 Depending on the object recognized in 

surveillance video frames are split into: - 

significant frames and non-significant frames. 

In the last step non-significant frames are 

discarded and significant frames are stored to construct 

the compressed surveillance video. 

In this algorithm, the FPS of surveillance video 

is calculated using the Open CV library and saved in 

variable ODSC_FPS. Then the video is divided into 

frames and saved in ODSC_Split.  Further frames are 

saved using the value of FPS (if FPS = 15 then the model 

saved 1st, 16th, 32th.....frames) in variable 

ODSC_Save. Then we apply the three D modules to 

identify significant and non-significant frames of 

surveillance video and significant frames save in 

variable ODSC_Significant and non-significant into 

ODSC_Non-significant variable. At last, the video is 

constructed using ODSC_Significant and saved in 

varable ODC Compressed, and non-significant frames 

are deleted from the network. 

 

4. Results and Analysis 

4.1. Datasets 

For our research work, we used two datasets: - 

(i) The Common objects in context (COCO) dataset for 

training purposes and (ii) The ATM surveillance dataset 

for testing. COCO is a large-scale dataset with 

thousands of images and 80 object categories which is 

used for object detection, segmentation, and captioning 

tasks in computer vision [39]. YOLOv5s, YOLOv7 and 

YOLOv8s modules are trained on the COCO dataset to 

identify significant frames and non-significant frames of 

ATM surveillance videos.  

As the COCO dataset contains 80 classes, to 

train our OD modules only 3 classes which include 

person, cat, and dog were used. If the frames contain 

any of these objects, then OD modules recognize that 

frame as the significant frame otherwise it is the non-

significant frame. Here a threshold value is set to 0.5 

means that only detections with confidence scores 

greater than or equal to 0.5 are considered significant 

and retained. ATM footage is given as input to trained 

YOLO modules to differentiate significant frames (SF) 

and non-significant frames (NSF) of video. Table 1 

represents the characteristics (frame per second (FPS), 

size duration, and resolution of frames) of four different 

tested ATM surveillance Videos 

 

4.2. Evaluation of OD Modules 

To implement YOLOv5s, YOLOv7-tiny, and 

YOLOv8s, Google Collab Pro is used as these models 

are computationally intensive and require GPU 

resources. The parameter specification required for the 

implementation of YOLO modules is mentioned in Table 

2. YOLOv5s uses a backbone network called "CSP-

DarkNET," which is a modified version of the Darknet 

architecture. It includes features like Cross-Stage Partial 

connections for improved performance and efficiency. 

 Algorithm 1: ODSC algorithm 

 Input: ATM surveillance footage 

 Dataset: COCO 

 Output: Compressed surveillance video 

1 ODSC_FPSGet FPS (Input ATM video) 

2 ODSC_Split Split video into the frames 

3 ODSC_Save Save frames after every ODSC_FPS 

4 do until all frames 

 ODSC_OD Apply YOLOv5s, YOLOv7-tiny and YOLOv8 framework 

5 ODSC_SignificantPredict frames 

 6 ODSC_non-significantPredict frames 

  end 

Table 1. Characteristics of Tested Video 

Clip Name FPS Size Interval Resolution 

Clip1.mp4 15 527 MB 30 Minutes (Min) 1280 × 720 

Clip2.mp4 15 451 MB 20 Min 1280 × 720 

Clip3.mp4 15 700 MB 40 Min 1280 × 720 

Clip4.mp4 15 250 MB 10 Min 1280 × 720 
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For training, YOLOv5s has a learning rate of 0.001, over 

100 epochs. A batch size of 16 is often employed during 

training. YOLOv5s employs a multi-task loss function 

that combines objectness loss, class loss, and 

localization loss shows in equation 3. Yolov5 uses the 

swish activation function which is shown in Equation 4. 

𝑓(𝑥) = 𝑥. 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝛽. 𝑥)              (4) 

Where 𝑥  is input to function, 𝛽  is 

hyperparameter, and sigmoid is another activation 

function represented in equation 5 and also used in 

YOLOv8. while YOLOv7 uses the LeakyRelu function 

shown in Equation 6. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥      (5) 

   𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,    𝑥 > 0

𝛼𝑥,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                (6) 

YOLOv7 employs EELAN as its backbone 

network to enhance the performance of OD. It has a 

lower learning rate of 0.0002, which helps fine-tune the 

model with more precision during training with 100 

epochs and 16 batch sizes. The specific loss functions 

in YOLOv7 may include Localization Loss, Objectness 

Loss, Classification Loss, Coarseness Loss, and 

Fineness Loss. For YOLOv8 C2F is used as the 

backbone with 0.01 learning rate having 16 batch size 

and 100 epochs. 

We tested the performance of YOLOv5s, 

YOLOv7-tiny, and YOLOv8s on the ATM surveillance 

dataset and received the result mentioned in Table 3. 

The YOLOv8s module exhibits a high level of precision 

of 98.7% followed by YOLOv7 and Yolov5 meaning that 

a significant portion of the positive predictions it makes 

is accurate. The recall of YOLOv7 and YOLOv8 stands 

at 98.2%, indicating its effectiveness in capturing most 

of the actual positive instances followed by YOLOv5 at 

97.9 %. The F1 score, which balances precision and 

recall, is 98.1% for YOLOv7 and YOLOv8, showing a 

harmonious trade-off between accuracy and 

completeness. In terms of overall correctness, YOLOv8s 

boasts an accuracy of 99.7%, implying that the majority 

of its predictions, both positive and negative, are correct. 

On the other hand, YOLOv7-tiny exhibits 99.5 % and 

98.3 % for YOLOv5. YOLOv7 and YOLOv8 models give 

similar promising performance but the accuracy of 

YOLOv8 is 0.2% greater than YOLOv7. Though both 

models exhibit better accuracy, the time taken to detect 

significant frames and non-significant frames using 

YOLOv8 is far better as compared to YOLOv7. For 

further processing, the output of the YOLOv8 module is 

used. Figure 7 represent the output of the OD module. 

Table 4 denotes the output of YOLOv7 on four 

ATM surveillance video clips where the first clips contain 

27000 frames and the FPS of all frame clips are 15, so 

only 1800 (27000/15) frames are given as input to the 

OD module. The YOLOv7-tiny recognized 539 frames as 

SF and 1261 as NSF. The second clip contains 18000 

total frames where 1200 (18000/15) frames are 

considered as preferred frames. Out of which 355 

frames are detected as SF and 845 NSF. The same logic 

is applied for the rest of the clips and SF and NSF are 

separated from the preferred frames using the YOLOv7-

tiny OD module. 

 

4.3 Compression Module 

In the compression module, we utilized the 

output of YOLO8s to merge all SF at the original FPS 

value. Table 5 presents an analysis of the compression 

module. For instance, the size of clip1.mp4 is 527 MB 

and of interval 30 Min.

 

 

 

 

Figure 7. The output of YOLO module (a) YOLOv5s (b) YOLOv7-tiny (c) YOLOv8s 
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Table 2. Parameter Specification 

Parameter YOLOv5 YOLOv7 YOLOv8 

Backbone Network CSP-DarkNET EELAN C2F 

Learning Rate 0.01 0.02  

0.01    

Epoch 100 100 100 

Batch Size 16 16 16 

Loss Function Multi-task loss Multi-task loss Multi-task loss 

GPU Yes Yes Yes 

Activation function Swish Leaky ReLU Sigmoid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Comparison with State of the Arts Approaches 

Parameter Arora et. al., [41] Ghamsarian et. al., [36] Zonglei et. al., [34] ODSC framework 

DL approach No Yes Yes Yes 

OD approach No Yes (Mask-RCNN) Yes (Faster RCNN) Yes  (YOLOv8s) 

Type of 

Compression 

Lossy 

Compression 
Lossy -Compression 

Lossy -

Compression 

Lossy -

Compression 

Compression 

achieved 
64.32 % 68% Upto 88 % 96.31% 

Table 3. Comparison of Od Modules 

Parameter (%) Yolov5 YOLOv7 YOLOv8 

Precision  97.6 98.6 98.7 

Recall  97.9 98.2 98.2 

F1 Score  98.1 98.3 98.3 

Accuracy  98.3 99.5 99.7 

Table 4. Count of Significant and Non-Significant Frames using The Yolov8s Module 

Clip Name Total frames Preferred frames SF NSF 

Clip1.mp4 27000 1800 539 1261 

Clip2.mp4 18000 1200 355 845 

Clip3.mp4 36000 2400 1420 980 

Clip4.mp4 9000 600 437 163 

Table 5. The output of ODSC model with resolution 1280 × 720 on YOLOv8s 

 Original clip Compressed clip  

Name Size Interval Size Interval % of Compression Achieved 

Clip1.mp4 527 MB 30 Min 19.4 MB 36 sec 96.31% 

Clip2.mp4 351 MB 20 Min 45.2 MB 25 Sec 87.12 % 

Clip3.mp4 700 MB 40 Min 48.5 MB 65 Sec 93.07 % 

Clip4.mp4 250 MB 20 Min 9.7 MB 30 Sec 96.12 % 

Overall Compression -- -- -- -- 93.15 % 
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After passing through the ODSC model the size 

of the clip is greatly reduced to 19.4 MB of duration 36 

sec and achieved 96.3% compression by maintaining 

the same resolution of frames as that of the original clip. 

Similarly, the second clip achieved 87.2 % compression, 

the third clip 93.07%, and the fourth clip 96.12%. 

Depending upon the count of SF, detected using 

YOLOv8 the clips are greatly compressed. Achieved the 

highest compression of 96.31% for clip1 and 87.12% 

lowest for clip2. The overall compression achieved using 

the ODSC model is 93.15%. Such compression ratios 

denote the proportionate decrease in file size, thereby 

facilitating efficient storage and transmission of video 

content without loss in quality. 

 

4.4. Comparison with a state-of-the-art 

approach 

The proposed ODSC model is compared with 

three other approaches which are summarized in Table 

6. We implement the approach of Arora et al. [40], 

Ghamsarian et al. [35], and Zonglei et. al. [33]. Arora et 

al. [41] developed a model to perform compression of 

surveillance video by removing the redundant frames 

using the mean squared error concept. This is a lossy 

compression and when it is implemented on an ATM 

surveillance dataset it achieves 64.32% compression. 

Ghamsarian et al. used the Mask-RCNN approach to 

detect the relevant and irrelevant frames of cataract 

surgery video from an ophthalmologist's point of view. 

The relevant frames of video are further compressed 

using higher quantization parameters. we trained this 

network on the COCO dataset and tested it on ATM 

surveillance video which achieved 68% compression. 

Zonglei et.al. presents a compression and 

decompression network for apron surveillance video. In 

this approach initially object is detected using the deep 

learnings Faster RCNN model [33]. Later on, these 

objects are placed in a linked list with its co-ordinate’s 

information and background. At the time of 

decompression, the objects with their information are 

retrieved from the linked list and stored on the 

background image. This approach is trained on the 

COCO dataset and tested on ATM surveillance which 

achieves a maximum of 88% compression.  Our ODSC 

framework detects the SF and NSF using the YOLOv8s 

approach and achieves the highest 96.31% 

compression. An experimental analysis states that our 

model outperforms the existing state-of-the-art 

approaches and achieves a remarkable compression 

ratio of 96.31%. 

 

5. Conclusion 

We present the novel Object Detection-Based 

Surveillance Compression (ODSC) model to compress 

ATM CCTV video while preserving critical surveillance 

information effectively. The model consists of two crucial 

steps: (i) utilization of advanced neural network 

approaches, namely YOLOv5s, YOLOv7-tiny, and 

YOLOv8s to differentiate between significant and non-

significant frames in the surveillance video. Second, it 

reconstructs the video by retaining only the significant 

frames. The results of comprehensive experiments 

indicate that YOLOv8s achieves a remarkable detection 

accuracy of 99.7% on the COCO dataset, establishing 

its proficiency. The ODSC approach successfully 

reduces storage space demands, achieving an 

impressive average compression ratio of up to 96.31% 

with YOLOv8s, surpassing existing state-of-the-art 

methods. 
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