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Abstract: Effective trash management has become a top environmental priority, especially in urban areas with 

significant population growth where waste output is on the rise. As cities work to manage waste properly, innovative 

waste management programmes have the potential to increase effectiveness, cut costs, and improve the aesthetic 

appeal of public places. This article introduces SCM-RIAN, a powerful "Smart City Management and Classification 

System" built on the Internet of Things (IoT) and deep learning (DL) technologies. Convolutional neural networks are 

used in the waste classification model implemented within this smart city management and classification framework. 

This system for classifying waste is intended to categorise rubbish into several classes at waste collection sites, 

encouraging recycling. The Rotation-Invariant Attention Network (RIAN) is a unique approach presented for the 

categorization process to address a prevalent problem in smart city management (SCM). A Centre Spectral Attention 

(CSpeA) module built within RIAN isolates spectral bands from other categories of pixels' influence, reducing 

redundancy. As an alternative to the conventional 3 3 convolution, the Rectified Spatial Attention (RSpaA) module is 

also introduced to obtain rotation-invariant spectral-spatial data contained in SCM patches. The suggested RIAN for 

SCM classification is built on integrating the CSpeA, 1×1 convolution, and RSpaA modules. The Ladybird Beetle 

Optimisation Algorithm (LBBOA) is used to optimise hyperparameters. With improved results compared to other 

current models, this suggested SCM-RIAN achieved 98.12% accuracy (ACC) with high sensitivity (SEN), specificity 

(SPEC), and kappa index (KI) using the waste classification dataset. 

Keywords: Smart city management, Rotation-invariant attention network, Center spectral attention, Rectified spatial 

attention, Ladybug beetle optimization algorithm. 

 

1. Introduction 

Numerous social and environmental concerns, 

the need for reliable infrastructure, and the possibility for 

technological improvements to improve quality of life are 

being faced by urban regions all over the world. 

Intelligent technologies have developed in response to 

these problems [1]. Cities are growing quickly thanks to 

factors including better connection and sophisticated 

automation, which is a reflection of the fourth industrial 

revolution that is still taking place in the twenty-first 

century. These elements have direct effect on the waste 

production brought on by urbanisation and population 

expansion [2]. The idea of "smart cities" is becoming 

more and more relevant, especially given that it is 

predicted that there will be 9.9 billion people on the 

planet by 2050, up from 7.8 billion in 2020 [3]. Smart 

cities incorporate a wide range of information and 

communication technologies, with the Internet of Things 

(IoT) playing a crucial role to efficiently managing public 

spaces and city services in a sustainable manner. 

Although there are many obstacles to 

overcome, efficient waste processing and collection are 

crucial duties for big cities. As a result, smart waste 

management (SWM) has become a key idea in smart 

cities, calling for a multifaceted strategy [4]. SWM 

includes data gathering and processing from sensors on 

trash trucks, intelligent trash cans (SGBs), and other 

municipal infrastructure. It comprises providing 

incentives to residents, keeping an eye on the 

environment, classifying and separating waste, planning 
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and optimising routes, providing information and 

decision assistance to many stakeholders, and 

managing waste as a whole. In order to construct a 

network of intelligent devices that are capable of 

measuring, computing, transferring, storing, and 

processing data, these systems are anticipated to 

heavily rely on IoT technology [5,6]. SWM systems with 

the use of ICT could be used to promote resource 

conservation, energy efficiency, and environmental 

safety [7].  

Smart construction, medical care, waste 

management, navigation, technological advancement, 

energy management, networking, water management, 

and agriculture are just a few of the industries where IoT-

based approaches have found applications. These 

approaches have improved services in contemporary 

cities around the world [8]. Waste management in smart 

cities poses a serious environmental concern that IoT 

might help solve [9,10]. It includes all phases of waste 

tracking, including generation, collection, transfer, and 

disposal, which can take place at landfills, disposal sites, 

or recycling facilities [11]. To address health and hygiene 

challenges while building smarter and safer 

communities, an IoT-based waste management system 

is necessary. An integrated strategy to waste 

management is presented in this work [12,13]. 

The paper at hand contributes significantly to 

the following areas; 

• The SCM-RIAN (Smart City Management- 

Rotation-Invariant Attention Network) model is 

presented in this research as a novel approach 

to deal with the complex problems of waste 

management and recycling in contemporary 

urban settings. 

• CSpeA and RSpaA modules are two cutting-

edge methodologies that SCM-RIAN makes use 

of to improve waste classification in smart city 

management. 

• The model's performance is further improved by 

the paper's use of the Ladybird Beetle 

Optimisation Algorithm (LBBOA) to 

tune hyperparameters. 

• SCM-RIAN performs excellently when tested 

against a dataset for waste classification. 

The remaining sections of the study are 

organised in the form of shadows: The relevant works, 

suggested model, the results and validation analysis, 

and the summary and conclusion are discussed in detail. 

 

2. Related works 

In this systematic study employing the PRISMA 

approach, Mohamed et al. [14] investigate the 

application of the Internet of Things (IoT) in the 

management of medical waste. Their studies centre on 

how IoT could improve waste monitoring and aid 

initiatives to hit net-zero waste goals. They support the 

use of digital surveillance tools, such as sensors for trash 

cans to track rubbish continuously. Despite the fact that 

few studies have looked at the possibilities of IoT in 

monitoring medical waste, the majority of studies have 

concentrated on problems with storage, transportation, 

or disposal. The report talks about these restrictions, 

examines the barriers to continued development, and 

offers suggestions based on some research. The 

digitalization of medical waste is growing and becoming 

a significant concern because to real-time monitoring 

and data exchange. 

Farjana et al. developed a thorough IoT-based 

e-waste management technique [15]. This system 

manages efficient e-waste collection, sorting, and 

disposal. IoT devices with sensors provide real-time data 

on e-waste levels, which enhances the collection and 

disposal processes. The authors advocate recycling 

electronic waste while also emphasising the benefits of 

using machine learning to distinguish between various 

materials, such as metallic and plastic components. By 

anticipating the volume of waste and doing data analysis 

utilising cloud-based technologies, their strategy 

enhances waste pickup schedules and overall 

effectiveness. 

Alzahrani et al. [16] employ blockchain 

technology wastewater management system for smart 

cities based on the IoT. Data storage for the 

development of wastewater reuse incentives is done via 

blockchain. The quantity and quality of reclaimed 

wastewater are used to determine token payouts, 

however there are concerns about potential data 

manipulation. The study makes use of anomaly 

detection methods to collect data from IoT sensor hacks. 

IoT sensors and quality indicators are used to measure 

the production and reuse of wastewater. According to 

simulations, wastewater will be managed more 

effectively and contain less moisture. Additionally, it will 

be reused and recycled. 

Ramya et al. [17] have developed a novel deep 

convolutional neural network (FHGO-based deep CNN) 

for the classification of electronic waste. They efficiently 

route e-waste photos using fractional Henry gas 

optimisation (FHGO), which ensures precise path 

prediction while consuming the least amount of energy. 

In addition to data augmentation, the team also employs 

feature extraction techniques such the local Gabor 

binary pattern (LGBP), histogram of oriented gradients 

(HOG), and grey level co-occurrence matrix (GLCM). 

The classification phase is then completed using deep 

CNN during FHGO training. One significant advantage 

is the method's higher degree of precision in comparison 

to alternatives. 

In a different work by Al. Duhayyim et al. [18], a 

modified cuttlefish swarm optimisation with machine 
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learning-based solid waste management (MCSOML-

SWM) system is presented for smart cities. The major 

goals of MCSOML-SWM are to classify different types of 

solid waste and to promote cutting-edge waste 

management practises. This paradigm simplifies object 

detection by making use of a successful single-shot 

detector (SSD) concept. By utilising the MCSO 

approach, the MixNet model, which is based on a deep 

convolutional neural network, is utilised to produce 

feature vectors, which speeds up the laborious process 

of manually adjusting the hyperparameters. The 

MCSOML-SWM Support Vector Machine (SVM) 

approach is employed for precise trash categorization, 

and comprehensive simulations demonstrate its superior 

performance, achieving a maximum accuracy of 99.34% 

in categorization tests. 

Furthermore, Thaseen Ikram et al. [19] 

developed an intelligent rubbish management model 

designed for smart cities. This model analyses, 

compiles, and deciphers data intelligently to enable 

sensible trash collection management decisions. It 

accomplishes this by combining a fuzzy inference 

engine with genetic algorithm (GA). The system includes 

a fuzzy inference engine to improve accuracy and 

adaptability while reducing errors under challenging 

operational circumstances. The cost of waste 

management is estimated using the Mamdani model, 

and the optimal set of rules for the fuzzy inference 

system (FIS) is chosen using GA. The model uses 

sensors to collect data, trains the FIS using fuzzy logic, 

and adds sensors to anticipate when smart bins would 

likely reach capacity. The genetic algorithm (GA) is used 

with fuzzy logic to identify important genes while 

preserving FIS interpretability. This deals with problems 

that the standard genetic algorithm has, like gene loss. 

This approach allows for the use of small, inexpensive 

sensors. The effectiveness of the model is verified using 

the Proteus simulator. The model had exceptionally high 

rates of overall accuracy, precision, and sensitivity 

(95.44%, 96.68%, and 93.96%, respectively). By 

correctly classifying recyclable items, this model 

minimises resource waste. 

3. Proposed Methodology 

The block diagram of the proposed SCM-RIAN 

is given below in figure 1. 

 

3.1 Dataset description 

A benchmark waste classification dataset that 

was provided from the Kaggle repository was used for 

the study of the experimental outcomes for the 

suggested technique [20]. There are the following 

numbers of photos in each class in this dataset: 

• Class: Cardboard 393 pictures 

• images of glass class: 491 

• Metal category: 400 pictures 

• paper type: 584 pictures 

• Plastic category: 472 pictures 

• Class of waste: 127 pictures 

A selection of sample photos from this collection 

are offered for visual reference, as seen in Figure 2. 

 

3.2 Classification 

This section introduces the suggested RIAN. First, 

Section A provides an overview of RIAN. The CSpeA 

module's specifics are then introduced in Section B. 

Finally, Section C provides a detailed description of the 

RSpaA module. 

 

3.2.1 Overview of RIAN 

A typical 3D data format [21] for SCM typically 

consists of one spectral dimension and two spatial 

dimensions. Let's write the waste image as 𝑋 ∈ 𝑅W×H×C,, 

where 𝑊 × 𝐻  stands for the waste image's spatial 

dimensions and C for the number of spectral bands. 

When determining the landcover category for a specific 

pixel, represented by the notation 𝑥𝑖 ∈ 𝑅𝐶  [22, 23], it is 

essential to take into account both the spectral and 

spatial information contained in X. 

 

 

 

 

 

 

Figure 1. Block diagram 
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Figure 2. Sample images: (a) cardboard, (b) glass, (c) metal, and (d) paper. 

 

Table 1. Detail of the proposed RIAN configuration 

Layer 
Shape 

of 
Output 

Connected 
Shape 

of 
Output 

Kernels 
Shape 

of input 

Input (K,K,C) CSpeA (K,K,C) - - 

Spectral_Convlution-1 (K,K,64) Element-wise-Addition-1 (K,K,64) 64 (K,K,64) 

Spectral_Convlution-4 (K,K,64) RSpaA-2 (K,K,64) 64 (K,K,64) 

Spectral_Convlution-1 (K,K,64) 
Spectral_Convlution-2, Element-wise-
Addition-1 (K,K,64) 64 (K,K,C) 

Spectral_Convlution-2 (K,K,64) RSpaA-1 (K,K,64) 64 (K,K,64) 

RSpaA-1 (K,K,64) Spectral_Convlution-3 (K,K,64) - (K,K,64) 

Element-wise-Addition-2 (K,K,64) 
Spectral_Convlution-4, Element-wise-
Addition-2 (K,K,64) 

 
(K,K,64) 

Fully_connection (L) Softmax (L) L (1,1,64) 

Global_Average_Pooling (1,1,64) Fully_connection (1,1,64) - (K,K,64) 

RSpaA-2 (K,K,64) Spectral_Convlution-5 (K,K,64) - (K,K,64) 

CSpeA (K,K,C) Spectral_Convlution-1 (K,K,C) - (K,K,C) 

Spectral_Convlution-5 (K,K,64) Element-wise-Addition-2 (K,K,64) 64 (K,K,64) 

Element-wise-Addition-2 (K,K,64) Global_Average_Pooling (K,K,64) - (K,K,64) 

Softmax (Output) (L) - (L) - (L) 
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Figure 3. A demonstration of a CSpeA module 

 

Waste images usually display a spatial 

smoothness pattern, in which adjacent pixels frequently 

fall under the same land-cover classification. We can use 

data from nearby pixels to improve the classification of 

pixel 𝑋i [24]. To do this, we clip nearby pixels from the 

waste image X into a square region, resulting in the 

waste patch 𝑋𝑖 ∈ 𝑅𝐾×𝐾×𝐶. The center pixel of this waste 

picture patch, designated by the letters KK, is called 𝑥i . 

Importantly, every pixel that will be classified belongs to 

a certain waste image patch. The RIAN technique is then 

used to estimate the category of the pixel 𝑋i using the 

information in the waste picture patch 𝑋i . A 

representation of the CSpeA module is shown in Figure 

3. 

CSpeA Module for Spectral Band Reduction: To 

remove unneeded spectral bands, the CSpeA module is 

first applied to the waste patch 𝑋i . The pipeline for 

processing data is streamlined in this step. 

Spectral-Spatial Rotation-Invariant Extraction 2 

residual blocks are employed to obtain spectral-spatial 

characteristics based on the waste patch 𝑋i  that are 

rotation-invariant. The ability of the model to handle 

different orientations is improved by these blocks. 

Definition of Pixel Category: The last stage is to 

define the category of the pixel 𝑋i, which is done using a 

linear softmax operation. 

Within RIAN, each residual block consists of the 

following elements: 

Each residual block's primary component, the 

RSpaA module, is critical for synthesizing rotation-

invariant spectral-spatial information. 

Utilizing rectified linear units (ReLU), spectral 

convolutions, each residual block employs two ReLU-

based spectral convolutions. The initial spectral 

convolution concentrates on spectral property extraction 

from the block-specific input. 

Spectral Convolutions: Two spectral 

convolutions are used in addition to the ReLU-based 

spectral convolutions. Notably, the residual block's 

second spectral convolution excels at generating highly 

discriminative spectral-spatial characteristics. 

The CSpeA Module for spectral band reduction, 

spectral convolutions for feature extraction, and the 

RSpaA Module for producing rotation-invariant spectral-

spatial information make up the core elements of the 

RIAN system. The efficacy of the network in categorising 

waste images is influenced by all of these factors. In 

order to avoid introducing dependencies on nearby 

pixels and successfully prevent interference from other 

pixel categories during feature extraction, the spectral 

convolution uses convolutions with 1×1 spatial kernels. 

Refer to Table 1 for a complete configuration of the 

proposed RIAN. 

 

3.2.2 CSpeA 

Normally, waste materials have a wide range of 

spectral bands, however the trash patch 𝑋i may contain 

redundant spectral data that could harm classification 

precision. It is crucial to either increase the useful 

spectral bands in the waste patch 𝑋i or decrease the 

redundant ones in order to improve the classification 

results. Deep networks are frequently used in recent 

research projects to dynamically recalibrate the spectral 

bands within the waste patch 𝑋i. This spectral attention 

module's goal is to produce an attention weight vector, 

as 𝛼 ∈ 𝑅C , that is specifically suited to the given 

classification task [25]. 

𝑎 = 𝑆𝑝𝑒𝐴(𝑋𝑖)   (1) 

For the purpose of classifying trash images, the 

Spectral Attention Module, abbreviated as 𝑆𝑝𝑒𝐴  (·) is 

essential in determining the importance of various 

spectral bands inside an image patch. Each spectral 

band is given attention weights by this module, 

expressed as, where lower values denote redundancy 

and larger values denote informativeness. The spectral 

bands of the waste picture patch 𝑋𝑖 are to be calibrated 

using these attention weights. Current methods 

frequently use the waste image patch 𝑋𝑖  global 

information to obtain their results. However, dealing with 

waste picture patches 𝑋𝑖  poses a common problem in 
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practise since these patches frequently contain 

conflicting pixels whose categories diverge from the core 

pixel 𝑥𝑖. Due to the fact that informative spectral bands 

differ for various pixel categories, this interference may 

affect how accurately attention weights are calculated. 

The centre pixel of inputs is captured using the 

centre pooling during forward propagation. In the 

backward propagation of gradients, just the input's 

central pixel is returned to. 

In this study, it present CSpeA, a simple strategy 

for decreasing the influence of overlapping pixels on 

their attention load. Centre pixel 𝑥𝑖 within the waste 

picture patch 𝑋𝑖 , where 𝑥𝑖  denotes the pixel being 

considered for classification, is the only pixel used by 

CSpeA to calculate the attention weight. This technique 

successfully avoids the disruption brought on by pixels 

from several categories. The CSpeA procedure is 

described as follows: 

Using a centre pool for the purpose of 

separating the central pixel 𝑥𝑖  from the waste picture 

patch 𝑋𝑖, we developed a centre pooling mechanism that 

is similar to max pooling. During the process of forward 

propagation, the central pixel is taken from the inputs 

using the center pooling function. During the backward 

propagation phase, slopes of the outcomes are only 

returned to the central pixel of the inputs. 

After central pooling, the attention weighted in a 

fully linked layer with an activation function that is 

sigmoid is only calculated using information from the 

central pixel, 𝑥𝑖. Recalibration of Spectral Bands: Using 

the attention weight that was collected, all of the pixels 

in the waste image patch's spectral bands are then 

recalibrated. The importance of spectral bands is 

adjusted during this recalibration procedure based on 

the calculated. The suggested CSpeA's formulation can 

be summed up as follows: 

𝑥𝑖 = 𝐶𝑒𝑛𝑡𝑒𝑟(𝑋𝑖)    (2) 

𝑎 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑐𝑥𝑖 + 𝑏𝑐)    (3) 

𝑋̂𝑖 = 𝑎⨂𝑋𝑖      (4) 

The following formulation uses: 

• The centre pooling action is denoted by 𝐶𝑒𝑛𝑡𝑒𝑟(·). 

• The weight parameter of the completely linked layer 

is denoted by 𝑊𝑐 ∈ 𝑅𝐶×𝐶 

• The bias term is 𝑏𝑐 ∈ 𝑅𝐶×1. 

• Channel-wise multiplication is indicated by "⊗" 

• 𝑋̂𝑖 ∈ 𝑅K×K×C   refers to the 𝑋𝑖  that has been 

calibrated. 

 

3.2.3 RSpaA 

The RSpaA module will be outlined in this article 

to improve the processing of rotation-invariant data by 

deep neural networks, particularly in rubbish photo 

categorization applications. The RSpaA module's main 

goal is to effectively combine the properties of nearby 

pixels to produce rotation-invariant spectral-spatial 

information. To make it simpler for readers to understand 

the RSpaA module, we first explain the standard 

spectral-spatial convolution. 

Starting from a shallow feature tensor denoted 

by the notation 𝑌 ∈ 𝑅K×K×Cin , where Y has the 

characteristics of a channel depth of Cin and a spatial 

size of K × K, we can begin. To this input feature Y, the 

spectral-spatial compression technique is used. A 

variety of 𝐶out kernels are employed in this operation. 

The spectral-spatial convolution's outcome is denoted by 

the symbol 𝑍 ∈ 𝑅K×K×Cout. Z's value at a certain point (i, 

j, or c) can be calculated using the following formula: 

𝑍(𝑖, 𝑗, 𝑐) = ∑ 𝑊𝑐(𝑖 − 𝑚, 𝑗 −𝑚,𝑛∈Ω𝑘(𝑖,𝑗),1≤𝑡≤𝐶𝑖𝑛

𝑛, 𝑡)⨂𝑌(𝑚, 𝑛, 𝑡)     (5) 

The formula is written as 𝑊𝑐 ∈ 𝑅𝑘×𝑘×𝐶𝑖𝑛 ,  and 

𝑘 × 𝑘  denotes the spatial dimensions of the kernels. 

Additionally, the set Ω𝑘(𝑖, 𝑗)  =  {𝑚, 𝑛||𝑚 −  𝑖|  ≤  𝑘/

2, | 𝑛 −  𝑗|  ≤  𝑘/2, 𝑚 ∈  𝑍1, 𝑛 ∈ 𝑍1},. The word bias has 

been omitted from this portrayal, it should be highlighted. 

 

 

 

 

 

 

 

 

 

Figure 4. A scenario of centre pooling 
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The two primary parts of the spectral-spatial 

convolution in Equation (5) are spectral feature 

extraction (denoted as ⊗) and spatial aggregation 

(denoted as ∑  ).We execute element-wise multiplication 

between the local 𝑘 × 𝑘 × 𝐶𝑖𝑛  features and the 𝑘 × 𝑘 ×

𝐶𝑖𝑛 convolutional kernels to calculate the spectral feature 

for each pixel. It is crucial to remember that the spectral-

spatial convolution's 𝑊c kernel lacks rotation invariance. 

As a result, in waste images, the spectral-spatial 

convolution may show sensitivity to spatial rotations. 

Spectral features from nearby pixels are immediately 

added to produce spectral-spatial information during the 

spatial aggregation step. This spatial aggregation 

technique does have certain drawbacks, though. 

Because it does not adaptively aggregate spectral 

qualities based on pixel content, neighbouring pixels 

may interfere. As a result, the output Z(i,j,c) may be 

impacted by conflicting pixel values. Additionally, the 

spectral-spatial convolution's ability to recover spectral-

spatial features from a larger context inside the scrapped 

image patch is constrained by the convolutional kernels' 

constrained spatial size. 

A new module named RSpaA is presented to 

take the place of spectral-spatial convolution in the 

construction of deep networks in order to solve its 

shortcomings. The RSpaA module consists of two 

crucial elements: The foundation of spectral-spatial 

convolution served as the basis for both spatial 

aggregation and spectral feature extraction. By using a 

spectral convolution operation with ReLU activation, we 

gather spectral characteristics in the spectral feature 

extraction section of the RSpaA module. Let 𝐶𝑜𝑢𝑡   be the 

number of kernels employed in our studies, and let K 

represent the amount of kernels used for the spectrum 

convolution. Let the spectral characteristics of Y 

obtained by this spectral convolution be represented by 

𝑌̅ ∈  𝑅𝐾×𝐾×𝐶𝑜𝑢𝑡 . There are three main advantages to 

using spectral convolution for spectral feature extraction: 

Due to the use of 1×1 kernels, spectral 

convolution is spatially invariant and resistant to waste 

image rotation. The preceding spectral-spatial 

convolution's SEN to spatial rotations is addressed by 

this characteristic. Efficiency of parameters: The number 

of weight parameters required by spectral convolution is 

much less than that of spectral-spatial convolution. This 

decrease in parameter complexity can improve both the 

model's performance and training. Implementation 

complexity is minimised and model creation is simplified 

because to the simplicity of spectral convolution. 

The RSpaA module provides an adaptive 

method for aggregating the spectral properties of pixels 

during the spatial aggregation phase based on how 

similar the pixels are to one another. It specifically seeks 

to exclude pixels with low similarity and gather spectral 

features from those that show a high degree of similarity. 

The following sentence describes this procedure: 

The following mathematical definition describes 

the spatial aggregate inside the proposed RSpaA: 

𝑍(𝑖, 𝑗) = ∑ 𝛽𝑖𝑗(𝑌̅(𝑚, 𝑛)⨂𝑌̅(𝑚, 𝑛))𝐼≤𝑚,𝑛≤𝐾  (6) 

where 𝛽𝑖𝑗(𝑌̅(𝑚, 𝑛)∈ 𝑅1×1 designates the closest 

pixel and The attention weight for all pixels is 𝛽𝑖𝑗(𝑌̅(𝑚, 𝑛) 

for the (i, j)-th pixel. The attention load of the (m, n)-th 

pixels corresponding to the (i, j)-th pixel in a wasted 

image patch is shown by 𝑍(𝑖, 𝑗)  ∈  𝑅1×1×𝐶𝑜𝑢𝑡 . In this 

study, 𝛽𝑖𝑗(𝑌̅(𝑚, 𝑛) is calculated using the resemblance 

of images (m, n) and (i, j). 

𝛽𝑖𝑗(𝑌̅(𝑚, 𝑛)) = 𝜙(𝛾(𝜌(𝑌̅(𝑖, 𝑗), (𝑌̅(𝑚, 𝑛)))) (7) 

The term 𝜌(𝑌̅(𝑖, 𝑗), 𝑌̅(𝑚, 𝑛) ∈ 𝑅1×1 .  in the 

equation (7) above stands for the similarity measure 

between Y(i,j) and Y(m,n). This similarity metric is crucial 

for figuring out how closely two pixels' spectral data are 

related. This similarity metric is calculated using the 

following two functions: 

𝛾(·): Setting the attention weight of pixels whose 

similarity values are below a given threshold τ to 0 is the 

objective of this function, which serves as a corrected 

unit, The softmax activation 𝜑(·)  generates attention 

loads for each pixel by normalizing the similarity values. 

Accurately determining pixel similarity becomes 

essential for achieving successful spatial aggregation. A 

number of operators have recently been developed to 

evaluate the similarity of 2 pixels within convolutional 

networks, including dot item, the distance from Euclid, 

and concatenation. The dot product stands out among 

these choices as a popular alternative with a track record 

of providing superior performance. Therefore, the 

operator used in this study to compute the similarity 

𝑌̅(𝑖, 𝑗) and 𝑌̅(𝑚, 𝑛). 𝜌(𝑌̅(𝑖, 𝑗), 𝑌̅(𝑚, 𝑛)), and the result is 

obtained as follows: 

𝜌(𝑌̅(𝑖, 𝑗), 𝑌̅(𝑚, 𝑛)) = ∑ 𝑌̅(𝑖, 𝑗)⨂𝑌̅(𝑚, 𝑛)  (8) 

A high value of 𝜌(𝑌̅(𝑖, 𝑗), 𝑌̅(𝑚, 𝑛))  indicates a 

considerable resemblance between 𝑌̅(𝑖, 𝑗)  and 𝑌̅(𝑚, 𝑛) 

according to Eq. (8). Using Eq. (8), we can calculate the 

similarity between all pixels and a specific pixel at 

coordinates (i, j) inside the waste picture patch 𝑋i , 

designated as 𝑆𝑖𝑗 ∈ 𝑅𝐾×𝐾: 

𝑆𝑖𝑗(𝑚, 𝑛) = 𝜌(𝑌̅(𝑖, 𝑗), 𝑌̅(𝑚, 𝑛))   (9) 

The RSpaA module's goal is to combine spectral 

characteristics from pixels with similar properties while 

reducing the impact of pixels with different properties. It 

add a corrected unit labelled as γ (·) to filter out different 

pixels while the spatial aggregation procedure is 

underway. By giving different pixels a low value, this unit 

effectively lowers the attention weights given to 

dissimilar neighbouring pixels to almost zero. The 

corrected unit's γ (·) formulation is expressed as follows: 

𝛾(𝜇) = {
𝜇,   𝜇 ≥ 𝜏
𝜖,   𝜇 < 𝜏

     (10) 
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In this situation, a predetermined ratio v, which 

is in relation to the highest value of 𝑆ij, determines the 

parameter τ. The attention weight also approaches zero 

since the value of 𝜖 is intentionally adjusted to -100. 

𝜏 = 𝑣. max(𝑆𝑖𝑗)     (11) 

The rectified similarity is then normalised using 

the softmax activation 𝜑(·) , which yields the 

computation of the attention weight 𝛽ij, where 𝛽𝑖𝑗 = 1. 

𝛽𝑖𝑗(𝑌̅(𝑚, 𝑛)) =
𝑒𝛾(𝜌(𝑌̅(𝑖,𝑗),𝑌̅(𝑚,𝑛)))

∑ 𝑒𝛾(𝜌(𝑌̅(𝑖,𝑗),𝑌̅(𝑚̂,𝑛̂)))1≤𝑚̂,𝑛̂≤𝐾
   (12) 

This can determine the spectral-spatial 

properties for each pixel in the waste image patch 𝑋𝑖 by 

using equations (6) and (12). According to the suggested 

method, extracting spectral-spatial features is done via 

the RSpaA module by taking into account pixel similarity, 

making it insensitive to spatial rotations in the discarded 

image. The proposed RSpaA module's and the self-

attention module that came before it both aim to enhance 

feature representations through the usage of pixel 

similarity. These two approaches, however, are very 

different from one another. 

Spectral Feature Extraction: The RSpaA 

module extracts spectral information from the RSpaA 

input using a single spectral convolution operation. On 

the other hand, self-attention generally necessitates 

three distinct spectral convolution techniques, resulting 

in a higher number of weight parameters, when 

producing query, key, and value features. 

Spatial Aggregation: A specialized unit is used 

in the spatial aggregate phase of RSpaA to eliminate 

contamination from various pixel categories. Self-

attention is less successful at decreasing interference 

from other pixel categories because it combines the 

spectral properties of all pixels throughout the entire 

spatial domain. 

The hyperparameters of RIAN are tuned using 

Lady Bug Beetle optimization algorithm [26]. 

 

4. Results and validation 

4.1 Experimental setup 

Using Python 3.6.5, the experiment 

incorporating the suggested technique was carried out. 

The proposed model was tested on a computer that met 

the following requirements: 

• The MSI Z370-A Pro motherboard 

• CPU: an Intel Core i5-8600k. 

• GPU: A 4 GB VRAM NVIDIA GeForce GTX 

1050 Ti16 GB of RAM, 250 GB of SSD, and a 1 

TB hard drive. 

Ten-fold cross-validation was used to provide 

reliable experimental validation. The following conditions 

were established for the experiments: 

• Batch dimension: 128 

• Rate of learning: 0.001 

• Momentum: 0.2 

• Optimizer: LBBOA 

In the experiments, the suggested model was 

trained in these environments and evaluated there. 

 

4.2 Performance Validation 

The heat map analysis is shown in Figure 5 and 

identifies the items in the dataset. Figure 6 displays the 

results of a sample object detection on test photos using 

the suggested technique. In particular, the suggested 

method exhibits amazing ACC, obtaining a stunning 

99% ACC in classifying glass, metal, and rubbish 

materials. The suggested method makes use of a 

confusion matrix to improve categorization, particularly 

after 1000 iterations. 

Following are the categories that the matrix 

correctly identifies: 

• 107 images were classified as waste with 

accuracy. 

• 570 images were correctly identified as paper. 

• 463 images were identified as plastic with 

accuracy. 

• cardboard was precisely detected in 472 

pictures. 

• 472 images with the category "glass" are 

accurate. 

• 380 images were correctly identified as metal. 

• 372 pictures were identified as paper correctly. 

These results highlight how well the suggested 

strategy for categorising waste objects performs in terms 

of effectiveness and accuracy (ACC). 

 

4.3 Performance measure 

The KI, SEN, SPEC, and ACC are a few 

examples of relevant performance metrics that can be 

used to assess a methodology's effectiveness. The 

regular evaluation of results and outcomes is different 

from a performance measure. The fundamental 

equations for calculating the waste detection's SEN, 

SPEC, ACC, and KI are given in Eqs. (13), (14), (15), 

and (16). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100   (13) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100   (14) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100   (15) 

𝐾𝑎𝑝𝑝𝑎 𝑖𝑛𝑑𝑒𝑥 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇

1−𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇
   (16) 

The comparison of the projected classifier with 

the existing algorithms in terms of several metrics on 

datasets without LBBOA and with LBBOA is shown in 

Table 2 and Table 3. 

 

 

 

 

 

 

 

 

 

Figure 5. Heat map evaluation. (a) Cardboard, (d) glass. 

    
(a) (b) (c) (d) 

 

  

 

 (e) (f)  
Figure 6. detection of a sample object visualised. (a, b) Glass, (c, d) metal, and (e, f) trash. 

 

Table 2. Analysis of suggested classifier in comparison to already-used methods without LBBOA 

Methodologies SPEC (%) ACC (%) SEN (%) KI (%) 

LSTM 76.55 72.03 72.33 76 

RNN 83 87.33 86.95 79.86 

CNN 88.4 92 91.77 81.45 

Proposed RIAN model 97.49 96.89 97.34 88 
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Figure 7. Classification analysis without LBBOA 

 

Table 3. Analysis of suggested classifier in comparison to already-used methods with LBBOA 

Methodologies SEN (%) SPEC (%) ACC (%) KI (%) 

LSTM 85.43 75 91.22 79 

RNN 89 83.50 90.89 80.08 

CNN 94.76 87 93.98 83.44 

Proposed RIAN model 98.12 98.09 97.43 89.67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Classification validation with LBBOA 
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From table 2 and figure 7, the performance 

metrics of different models stand out in the analysis of 

classification without using the Ladybird Beetle 

Optimisation Algorithm (LBBOA). The SEN, SPEC, 

ACC, and KI of the LSTM are 76.55%, 72.03%, and 

72.33%, respectively. With a SEN of 83%, a SPEC of 

87.33%, an ACC of 86.95%, and a KI of 79.86%, RNN 

outperforms this. With a SEN of 88.4%, SPEC of 92%, 

ACC of 91.77%, and a Kappa score of 81.45%, CNN 

displays even better results. The proposed RIAN model, 

though, excels in this study and produces outstanding 

outcomes. RIAN has a remarkable Kappa value of 88%, 

SEN of 97.49%, SPEC of 96.89%, and ACC of 97.34%. 

These outstanding numbers highlight the RIAN model's 

effectiveness in classifying waste, making it a promising 

option for enhancing waste management in smart cities. 

From table 3 and figure 8, the considerable 

improvements in the performance measures of many 

models in the thorough analysis that incorporates the 

Ladybird Beetle Optimisation Algorithm (LBBOA). With 

SEN of 85.43%, SPEC of 75%, ACC rate of 91.22%, and 

KI of 79%, LSTM achieves excellent results. With a SEN 

of 89%, SPEC of 83.50%, ACC of 90.89%, and a Kappa 

score of 80.08%, RNN maintains its advantage. With a 

remarkable SEN of 94.76%, SPEC of 87%, ACC rate of 

93.98%, and KI of 83.44%, CNN improves even more on 

its previous performance. However, it is abundantly 

evident that the proposed RIAN model is the top 

performance in this thorough research. With unequalled 

SEN of 98.12%, amazing SPEC of 98.09%, 

extraordinary ACC rate of 97.43%, and increased KI of 

89.67%, RIAN displays exceptional results. These 

exceptional measurements highlight the RIAN model's 

unmatched strength in the area of waste classification, 

categorically proving it as a highly promising and efficient 

solution ready to revolutionise waste management in 

smart cities.  It is essential to include LBBOA while 

setting hyperparameters. To improve the model's 

classification performance, LBBOA tunes its 

parameters. With the help of this optimisation process, a 

model is created that is precisely calibrated to the 

distinctive features of the waste data, improving ACC 

and effectiveness. 

 

5. Conclusion 

In conclusion, the creation of an efficient waste 

management system has turned into a pressing 

environmental necessity, particularly in the context of 

expanding metropolitan regions. The SCM-RIAN is a 

potent and ground-breaking solution presented in this 

paper to tackle the complex problems of waste 

management and recycling in contemporary 

metropolitan settings. The study proposes RIAN as a 

cutting-edge and reliable classification method to 

address the problems inherent in smart city 

management (SCM). Redundancy is minimized via the 

RSpaA and CSpeA modules, which isolate spectral 

bands and minimize the impact of other pixel categories 

in obtaining rotation-invariant spectra-spatial properties 

from SCM patches. With the help of this novel method, 

trash classification is kept precise and flexible regardless 

of the spatial orientation. The dataset for waste 

categorization is used in this article to assess the results. 

SCM-RIAN's outstanding ACC rate of 98.12%, together 

with its high SEN, SPEC, and KI values, speak for itself. 

These exceptional results outperform those of current 

models, demonstrating the potency and effectiveness of 

SCM-RIAN as a cutting-edge solution to the difficult 

problems of SCM and categorization in waste. Utilising 

LBBOA, hyperparameters are tweaked.  Adopting 

cutting-edge technology like SCM-RIAN will be essential 

in creating cleaner, more sustainable, and 

environmentally responsible cities in the future as 

metropolitan areas expand. In future, going to Create 

sophisticated analytics and visualisation tools so that 

waste management authorities may make decisions 

based on data by giving them actionable insights into 

waste trends. 
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