Investigation of Wettability and AC-Conductivity of EVA/PANI Composite

Muktikanta Panigrahi
Department of Materials Science, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Mayurbhanj--757003, Odisha, India


Plum Analytics


In the current work, EVA/PANI composite is successfully prepared by in-situ technique. Both prepared materials are characterized by XRD, FTIR, UV-Visible, and SEM analyses. Wettability and dielectric properties of both EVA film and EVA/PANI composite are studied. High intense peak is found in EVA/PANI composite and is indicated more crystalline nature compared to pristine EVA polymer film. π-π* and polaron transitions are appeared in the UV-Visible spectrum of EVA/PANI composite. Different absorption band of EVA film and EVA/PANI composite are viewed in their spectrum. A study has been made of wettability of smooth surfaces of EVA and HCl doped EVA/PANI materials by observing the equilibrium contact angle formed by a liquid drop resting on the solid surface. Wettability results of EVA/PANI composite shows hydrophilic nature. Frequency dependent AC electrical conductivity and Dielectric are analyzed for both materials.


  • Ethylene Vinylene Acetate ,
  • Solution Processing,
  • Polyaniline Salt,
  • Morphology,
  • Structure,
  • Wettability,
  • Dielectric
  • ...More


  1. N. Patel, K. Okabe, A. Oya, Designing Carbon Materials with Unique Shapes using Polymer Blending and Coating Techniques, Carbon, 40 (3) (2002) 315-320.
  2. C.E. Scott, C.W. Macosko, Morphology Development during the Initial Stages of Polymer-Polymer Blending, Polymer, 36 (3) (1995) 461-470.
  3. D.B. Wright, J.P. Patterson, A. Pitto-Barry, A. Lu, N. Kirby, N.C. Gianneschi, C. Chassenieux, O. Colombani, R.K. O’Reilly, The Copolymer Blending Method: A New Approach for Targeted Assembly of Micellar Nanoparticles, Macromolecules, 48 (2015) 6516–6522.
  4. L.H. Sperling, On the Generation of Novel Polymer Blend, Graft, and IPN Structures Through the Application of Group Theory Concepts, Recent Advances in Polymer Blends, Grafts, and Blocks, 4 (1974) 93-116.
  5. Y. Zhang, J. Chen, H. Li, Functionalization of Polyolefins with Maleic Anhydride in Melt State through Ultrasonic initiation, Polymer, 47 (13) (2006) 4750-4759.
  6. N.K. Madi, Thermal and Mechanical Properties of Injection Molded Recycled High-Density polyethylene blends with virgin isotactic polypropylene, Materials and Design, 46 (2013) 435-441.
  7. M. Kontopoulou, L. Huang, J. A. Lee, Binary Blends of EVA and Metallocene Catalyzed Ethylene-α-Olefin Copolymers and Their Film Properties, Advances in Polymer Technology, 22 (3) (2003) 209-217.
  8. J. Vaezi, M. Nekoomanesh, H.A. Khonakdar, S.H. Jafari, A. Mojarrad, Correlation of Microstructure, Rheological and Morphological Characteristics of Synthesized Polypropylene (PP) Reactor Blends Using Homogeneous Binary Metallocene Catalyst, Polymers, 9 (3) (2017) 75-14.
  9. K.L. Walton, Metallocene Catalyzed Ethylene/Alpha Olefin Copolymers Used in Thermoplastic Elastomers, Rubber Chemistry and Technology, 77 (3) (2004) 552-568.
  10. M. A. Rodríguez-Pérez, A. Duijsens, J. A. De Saja, Effect of Addition of EVA on the Technical Properties of Extruded Foam Profiles of Low-Density Polyethylene/EVA Blends, Journal of Applied Polymer Science, 68 (8) (1998) 1237-1244.
  11. M. K. Panigrahi, S.B Majumdar, B. Adhikari, (2011) H3PO4‒Doped DL-PLA/PANI Conductive Composite for Methane Gas Sensing: Polymer Composite for Gas Sensing, 2011 International Conference on Nanoscience, Technology and Societal Implications, IEEE Xplore, 1−7.
  12. M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, S. Pardo, E. Bucio, Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications, Polymers, 13 (17) (2021) 2998.
  13. S. Palaniappan, A. John, Polyaniline Materials by Emulsion Polymerization Pathway, Progress in Polymer Science, 33 (7) (2008) 732-758.
  14. A. Kausar, Emulsion Polymer Derived Nanocomposite: A Review on Design and Tailored Attributes, Polymer-Plastics Technology and Materials, 59 (16) (2020) 1737-1750.
  15. J. Lu, K.S. Moon, B.-K. Kim, C.P. Wong, High Dielectric Constant Polyaniline/Epoxy Composites via in Situ Polymerization for Embedded Capacitor Applications, Polymer, 48 (6) (2007) 1510-1516.
  16. O. Oladele T. F. Omotosho, A. A. Adediran, Polymer-Based Composites: An Indispensable Material for Present and Future Applications, International Journal of Polymer Science, 2020 (2020) 1-12.
  17. S Sankaran, K. Deshmukh, M. B. Ahamed, S.K. Khadheer Pasha, Recent Advances in Electromagnetic Interference shielding Properties of Metal and Carbon Fillerreinforced Flexible Polymer Composites: A Review, Composites Part A: Applied Science and Manufacturing, 114 (2018) 49-71.
  18. M. Arjmand, M. Mahmoodi, G. A. Gelves, S. Park, U. Sundararaj, Electrical and Electromagnetic Interference Shielding Properties of Flow-Induced Oriented Carbon Nanotubes in Polycarbonate, Carbon, 49 (11) (2021) 3430-3440.
  19. V. T. Rathod, J. S. Kumar, A. Jain, Polymer and Ceramic Nanocomposites for Aerospace Applications, Applied Nanoscience, 7 (2017) 519–548.
  20. J. Kruželák, A. Kvasničáková, K. Hložekováand, I. Hudec, Progress in Polymers and Polymer Composites Used as Efficient Materials for Emi Shielding, Nanoscale Advanced, 3 (2021) 123-172.
  21. M. Rahaman, L. Nayak, T. K. Chaki, D. Khastgir, Conductive Composites Made from In-Situ Polymerized Polyaniline in Ethylene Vinyl Acetate Copolymer (EVA): Mechanical Properties and Electromagnetic Interference Shielding Effectiveness, Advanced Science Letters, 5 (2012) 1-8.
  22. M. Rahaman, T.K. Chaki, D. Khastgir, Polyaniline/Ethylene Vinyl Acetate Composites as Dielectric Sensor, Polymer Engineering & Science, 54 (2015) 1632-1639.
  23. Z. Zhang, Y. Zhang, K. Yang, K. Yi, Z. Zhou, A. Huang, K. Mai, X. Lu, Three-Dimensional Carbon Nanotube/ Ethylvinylacetate/ Polyaniline as a High-Performance Electrode for Supercapacitors, Journal of Materials Chemistry A, 3 (2015) 1884-1889.
  24. S. V. Ganachari, L. R.Viannie, P. Mogre, R. P. Tapaskar, J. S. Yaradoddi, Conducting Polymer Composite-Based Sensors for Flexible Electronics, Handbook of Ecomaterials, (2019) 1311–1341.
  25. Z. Debao, J. Bai, N. Yang, X. Li, C. Miao, L. Zhao, A Study of Conductive Thermoplastic Elastomeric Polyurethane and Graphene Nanocomposite Thin Films for Application to Flexible Electrical Sensors, Materials Research Innovations, 25 (3) (2021) 162-168.
  26. S. Zhao, W. Ran, W. Ran, D. Wang, R. Yin, Y. Yan, K. Jiang, Zheng Lou, G. Shen, 3D Dielectric Layer Enabled Highly Sensitive Capacitive Pressure Sensors for Wearable Electronics, ACS Applied Materials & Interfaces, 12 (28) (2020) 32023–32030.
  27. S. Bhalerao, N. Ambhore, M. Kadam, Polymer Matrix Composite in High Voltage Applications: A Review, Biointerface Research in Applied Chemistry, 12 (6) (2022) 8343-8352.
  28. M. Stacheder, F. Königer, R. Schuhmann, New Dielectric Sensors and Sensing Techniques for Soil and Snow Moisture Measurements, Sensors, 9 (4) (2009) 2951-2967.
  29. W. Geng, T. J. Cuthbert, C. Menon, Conductive Thermoplastic Elastomer Composite Capacitive Strain Sensors and Their Application in a Wearable Device for Quantitative Joint Angle Prediction, ACS Applied Polymer Materials, 3 (1) (2021) 122-129.
  30. M. Bahmanyar, S. Sedaghat, A. Ramazani S.A., H. Baniasadi, Preparation of Ethylene Vinyl Acetate Copolymer/ Graphene Oxide Nanocomposite Films via Solution Casting Method and Determination of the Mechanical Properties, Polymer-Plastics Technology and Engineering, 54 (2015) 218–222.
  31. H.-Y. Li, L.-E. Perret-Aebi, R. Théron, C. Ballif, Y. Luo, and R. F. M. Lange, Optical Transmission as A Fast and Non-Destructive Tool for Determination of Ethylene-Co-Vinyl Acetate Curing State in Photovoltaic Modules, Progress in Photovoltaics, 21 (2013) 187-194.
  32. R. Zhang, X. He, Q. Chen, L. Meng, Non-Isothermal Crystallization Behaviors of Ethylene Vinyl Acetate Copolymer and Ethylene Vinyl Acetate Copolymer-Graft-Maleic Anhydride, Journal of Macromolecular Science, Part B: Physics, 54 (2015) 1515–1531.
  33. N.Y. Yuan, F.F. Ma, Y. Fan, Y.B. Liu, J.N. Ding, High Conductive Ethylene Vinyl Acetate Composites Filled with Reduced Graphene Oxide and Polyaniline, Composites Part A: Applied Science and Manufacturing, 43 (12) (2012) 2183-2188.
  34. H. Adelnia, H. C. Bidsorkhi, A.F. Ismail, T. Matsuura, Gas Permeability and Perm Selectivity Properties of Ethylene Vinyl Acetate/Sepiolite Mixed Matrix Membranes, Separation and Purification Technology, 146 (2015) 351–357.
  35. S. Padmapriya, H. Seshadri, K. J. Jaidev, S. Venkatachalam, D. Kumar, S. Pal, Storage and Evolution of Hydrogen in Acidic Medium by Polyaniline, International Journal of Energy Research, 42 (8) (2017) 1196-1209.
  36. T.-M. Wu, Y.-W. Lin, Doped Polyaniline/Multi-Walled Carbon Nanotube Composites: Preparation, Characterization and Properties, Polymer, 47 (10) (2006) 3576-3582.
  37. A. B. Afzal, M. J. Akhtar, M. Nadeem, M. M. Hassan, Investigation of Structural and Electrical Properties of Polyaniline/Gold Nanocomposites, The Journal of Physical Chemistry A, 113 (2009) 17560–17565.
  38. X. Z. Yan, T. Goodson, High Dielectric Hyperbranched Polyaniline Materials, The Journal of Physical Chemistry B, 110 (2006) 14667-14672.



Article Details

Volume 4, Issue 2, Year 2022

Published 2022-10-05


Download data is not yet available.