Abstract

Air separation is a process of separating primary components from the atmospheric air. Development of membrane technologies plays a key role in air separation. Multi-layer polymeric nanocomposite membranes have been developed by a novel technique using Polyacrylonitrile (PAN) and cellulose acetate (CA) along with nano silica particles (SiO2) to obtain a higher oxygen selectivity and permeability. For the construction of the multilayer membrane, the Box-Behnken design has been used by employing three independent variables namely PAN Electro spinning time, the SiO2 percentage in the PAN polymer and CA/PEG polymer concentration. The developed membranes have been characterized for its surface morphology and physical properties. Along with the analysis of compound desirability, the results were also subject to statistical analysis in order to form regression equations. The electro spun fiber diameter increases along with the concentration of SiO2 nanoparticles and the range is from 50 nm to 400 nm. Moreover, the maximum pore size on the surface of the membrane lies between 200 to 400 nm whereas the maximum percentage of oxygen purity obtained is 48 with the permeate flux of 5.45 cm3/cm2/min.

Keywords

Air separation, membrane, permeability, electrospinning, box-behnken,

Downloads

Download data is not yet available.

References

  1. M. Riaz, M. A. Butt, Oxygen Transport Membranes and their Role in CO2 Capture and Syngas Production, Journal of Membrane uoJ Science & Technology, 8 (2018) 1-10.
  2. X. Zhu, S. Sun, Y. He, Y. Cong, and W. Yang, New concept on air separation, Journal of Membrane Science, 323 (2008) 221-224.
  3. A. Fernández-Barquín, C. Casado-Coterillo, S. Valencia, A. Irabien, Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature, Membranes, 6 (2016) 28.
  4. R. J. Allam, Improved oxygen production technologies, Energy Procedia, 1 (2009) 461-470.
  5. B. Belaissaoui, Y.L. Moullec, H. Hagi, E, Favre, Energy Efficiency of Oxygen Enriched Air Production Technologies: Cryogeny vs Membranes, Energy Procedia, 63 (2014) 497-503.
  6. A. Gollan, and M. H. Kleper, AlChESymp. Ser., 250, 82, 35 (1986).
  7. T. Burdyny, H. Struchtrup, Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process, Energy, 35 (2010) 1884-1897.
  8. C. Fabiani, L. Bimbi, M. Pizzichini, L. Santarossa, Performance of a hollow fibre membrane unit in oxygen-enriched air production, Gas separation & purification, 10 (1996)75-79.
  9. P. Scarfato, E. Avallone, M. R. Galdi, L. D. Maio, and L. Incarnato, Preparation, characterization, and oxygen scavenging capacity of biodegradable α‐tocopherol/PLA microparticles for active food packaging applications, Polymer Composites, 38 (2017) 981-986.
  10. A. Leo, S. Liu, Diniz da Costa, Z. Shao, Oxygen permeation through perovskite membranes and the improvement of oxygen flux by surface modification, Science and Technology of Advanced Materials, 8 (2006) 819-825.
  11. J.W. Phair, S.P.S. Badwal, Materials for separation membranes in hydrogen and oxygen production and future power generation, Science and Technology of Advanced Materials, 7 (2006) 792-805.
  12. S. Basu, AL. Khan, A. Cano-Odena, C. Liu, IF. Vankelecom, Membrane-based technologies for biogas separations, Chemical Society Reviews, 39(2010)750-768.
  13. S. Wang, and X. Han, Adv. Chem..Engineer. Sci.,2, 336 (2012).
  14. P. Bernardo, G. Clarizia, 30 years of membrane technology for gas separation, Chemical Engineering Transactions, 32 (2013) 1999-2004.
  15. R.S. Murali, T. Sankarshana,and S. Sridhar, Air Separation by Polymer-based Membrane Technology, Separation & Purification Reviews, 42 (2013) 130-186.
  16. P. Bernardo, E. Drioli, and G. Golemme, Membrane Gas Separation: A Review/State of the Art, Industrial & Engineering Chemistry Research, 48 (2009) 4638-4663.
  17. D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review, Polymer, 54(2013) 4729-4761.
  18. A. Javaid, Membranes for solubility-based gas separation applications, Chemical Engineering Journal, 112(2005) 219-226.
  19. K. C. Chong, S. O. Lai, H. S. Thiam, H. C. Teoh, and S. L. Heng, Recent Progress of Oxygen/Nitrogen Separation using Membrane Technology, Journal of Engineering Science and Technology, 11(2016) 1016-1030.
  20. N. Peng, N. Widjojo, P. Sukitpaneenit, M.M. Teoh, G.G. Lipscomb, T.S. Chung, J.Y. Lai, Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future, Progress in Polymer Science, 10 (2012) 1401-1424.
  21. R.W. Baker, Future Directions of Membrane Gas Separation Technology, Industrial & Engineering Chemistry Research, 41 (2002) 1393-1411.
  22. X.Y. Wang, A.J. Hill, B.D. Freeman, I.C. Sanchez, Structural, Sorption, and Transport Characteristics of an Ultrapermeable Polymer, Journal of Membrane Science, 314 (2008) 15-23.
  23. D.T. Coker, R. Prabhakar, and B. D. Freeman, Tools for teaching gas separation using polymers, Chemical Engineering, 37 (2003) 60-67.
  24. V.C. Souza, M.G N. Quadri, Organic-inorganic hybrid membranes in separation processes: a 10-year review, Brazilian Journal of Chemical Engineering, 30 (2013) 683-700.
  25. A.F. Ismail, N. Ridzuan, S.A. Rahman, Latest development on the membrane formation for gas separation, Songklanakarin Journal of Science and Technology, 24 (2002) 1025-1043.
  26. S. Zhao, X. Cao, Z. Ma, Z. Wang, Z. Qiao, J. Wang, S. Wang, Mixed-Matrix Membranes for CO2/N2 Separation Comprising a Poly(vinylamine) Matrix and Metal-Organic Frameworks, Industrial and Engineering Chemistry Research, 54(2015) 5139-5148.
  27. D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, Journal of Industrial and Engineering Chemistry, 19 (2013) 375-393.
  28. M. Okhawilai, I. Dueramae, C. Jubsilp, S. Rimdusit, Effects of High Nano-SiO2 Contents on Properties ofEpoxy-Modified Polybenzoxazine, Polymer Composites, (2015)1-12.
  29. A.A. Belyaev, Y.P. Yampolskii, L.E. Starannikova, A.M. Polyakov, G. Clarizia, E. Drioli, G. Marigliano, and G. Barbieri, Membrane air separation for intensification of coal gasification process, Fuel Processing Technology, 80(2003) 119-141.
  30. M. Amini, M. Homayoonfal, M. Arami, A. Akbari, Modification and characterization of prepared polysulfone ultrafi ltration membranes via photografted polymerization: Effect of different additives, Desalination and Water Treatment, 9 (2009) 43-48.
  31. D.Y. Zuo, Y.Y. Xu, W.L. Xu, H.T. Zou, The influence of PEG molecular weight on morphologies and properties of PVDF asymmetric membranes, Chinese Journal of Polymer Science, 26(2008) 405-414.
  32. G. Nallathambi, T. Ramachandran, V. Rajendran, R. Palanivelu, Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics, Materials Research, 14 (2011) 552-559.
  33. M. Mohagheghian, M. Sadeghi, M. P. Chenar, and M. Naghsh, Gas separation properties of polyvinylchloride (PVC)-silica nanocomposite membrane, Korean Journal of Chemical Engineering, 31(2014) 2041-2050.
  34. B.W. Rowe, L.M. Robeson, B.D. Freeman, D.R. Paul, Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results, Journal of Membrane Science, 360 (2010) 58-69.
  35. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63 (2003) 2223-2253.
  36. A.K. Selvam, G. Nallathambi, Polyacrylonitrile/silver nanoparticle electrospun nanocomposite matrix for bacterial filtration, Fibers and Polymers, 16 (2015) 1327-1335.
  37. S.A. Karthick, N. Gobi, Nano silver incorporated electrospun polyacrylonitrile nanofibers and spun bonded polypropylene composite for aerosol filtration, Journal of Industrial Textiles, 46(2017) 1342-1361.