Abstract

The hest for technological advancement in mobile communication is due to augmentation of wireless user. The deployment of 5G mobile communication is less than 4G mobile communication due to challenges in security like cyberwarfare, espionage, critical infrastructure threats. Nevertheless, critic of neurological discomforts, tissue damage in living organisms occur in the existence of EMF radiation. Also, physical scarcity for spectral efficiency arises due to ubiquitous data traffic. Inspite of these disputes data rate, low latency, device to device communication is also a challenge. In this paper we provide a survey on radiation effects, security threats, traffic management.

Keywords

EMF exposure, Massive MIMO, mm wave, Beamforming, Resilience and security,

Downloads

Download data is not yet available.

References

  1. R. N. Kostoff, P. Heroux, M. Aschner, A. Tsatsakis, Adverse Health Effects Of 5G Mobile Networking Technology Under Real-Life Conditions, Toxicology Letters, 323 (2020) 35-40.
  2. A. Singh, N. Singh, T. Jindal, A. Rosado-Muñoz, M. K. Dutta, A Novel Pilot Study of Automatic Identification of EMF Radiation Effect on Brain Using Computer Vision and Machine Learning, Biomedical Signal Processing and Control, 57 (2020).
  3. C. T. Garrocho, M. J. da Silva, R. A. Oliveira, D2D Pervasive Communication System with Out-of-Band Control Autonomous To 5G Networks, Wireless Networks, 26 (2020) 373-386.
  4. M. De Ree, G. Mantas, A. Radwan, S. Mumtaz, J. Rodriguez, I. E. Otung, Key management for beyond 5G mobile small cells: A survey, IEEE Access, 7 (2019) 59200-59236.
  5. N. Ulltveit-Moe, V. A. Oleshchuk, G. M. Køien, Location-Aware Mobile Intrusion Detection with Enhanced Privacy in a 5G Context, Wireless Personal Communications, 57 (2011) 317-338.
  6. X. Ji, K. Huang, L. Jin, H. Tang, C. Liu, Z. Zhong, M. Yi, Overview of 5G security technology, Science China Information Sciences, 61 (2018) 1-26.
  7. M. A. Ferrag, L. Maglaras, A. Argyriou, D. Kosmanos, H. Janicke, Security For 4G and 5G Cellular Networks: A Survey of Existing Authentication and Privacy-Preserving Schemes, Journal of Network and Computer Applications, 101 (2018) 55-82.
  8. I. Ahmad, S. Shahabuddin, T. Kumar, J. Okwuibe, A. Gurtov, M. Ylianttila, Security For 5G And Beyond, IEEE Communications Surveys & Tutorials, 21 (2019) 3682-3722.
  9. D. Fang, Y. Qian, R. Q. Hu, Security For 5G Mobile Wireless Networks, IEEE Access, 6 (2017) 4850-4874.
  10. S. Zhang, Y. Wang, W. Zhou, Towards secure 5G networks: A Survey, Computer Networks, 162 (2019) 1-56.
  11. C. Pölzl, EMF Recommendations Specific for Children?, Progress In Biophysics And Molecular Biology, 107 (2011) 467-472.
  12. D. J. Panagopoulos, Comparing DNA Damage Induced by Mobile Telephony and Other Types of Man-Made Electromagnetic Fields, Mutation Research/Reviews in Mutation Research, 781 (2019) 53-62.
  13. R. Dubey, P. K. Mishra, S. Pandey, (2020) Mixed Uplink, Downlink Channel Allocation and Power Allocation Schemes for 5G Networks, Wireless Personal Communications, 1-22.
  14. M. Guxens, R. Vermeulen, I. Steenkamer, J. Beekhuizen, T. G. Vrijkotte, H. Kromhout, A. Huss, Radiofrequency Electromagnetic Fields, Screen Time, and Emotional and Behavioural Problems In 5-Year-Old Children, International Journal of Hygiene and Environmental Health, 222 (2019) 188-194.
  15. C. D. Angelo, E. Costantini, M. A. Kamal, M. Reale, Experimental Model for ELF-EMF Exposure: Concern for Human Health, Saudi Journal of Biological Sciences, 22 (2015) 75-84.
  16. B. Christopher, Y. S. Mary, M. U. Khandaker, D. A. Bradley, M. T. Chew, P. J. Jojo, Effects of Mobile Phone Radiation on Certain Hematological Parameters, Radiation Physics and Chemistry, 166 (2020) 1-4.
  17. T. Saliev, D. Begimbetova, A. R. Masoud, B. Matkarimov, Biological Effects of Non-Ionizing Electromagnetic Fields: Two Sides of a Coin, Progress in Biophysics and Molecular Biology, 141 (2019) 25-36.
  18. J. Zhang, P. Tang, L. Tian, Z. Hu, T. Wang, H. Wang, 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication, Science China Information Sciences, 60 (2017) 1-19.
  19. F. Al-Ogaili, R. M. Shubair, (2016) Millimeter-wave mobile communications for 5G: Challenges and opportunities, In 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), IEEE, 1003-1004.
  20. E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, T. L. Marzetta, Massive MIMO Is A Reality—What Is Next?: Five Promising Research Directions for Antenna Arrays, Digital Signal Processing, 94 (2019) 3-20.
  21. A. Grassi, G. Piro, G. Boggia, M. Kurras, W. Zirwas, R. S. Ganesan, L. Thiele, Massive MIMO Interference Coordination For 5G Broadband Access: Integration and System Level Study, Computer Networks, 147 (2018) 191-203.
  22. E. Ali, M. Ismail, R. Nordin, N. F. Abdulah, Beamforming Techniques for Massive MIMO Systems In 5G: Overview, Classification, And Trends for Future Research, Frontiers of Information Technology & Electronic Engineering, 18 (2017)753-772.
  23. A. M. Ahmed, S. A. Hasan, S. A. Majeed, 5G Mobile Systems Challenges and Technologies: A Survey, Journal of Theoretical and Applied Information Technology, 97 (2019) 3214-3226.
  24. C.A. Pitz, E.L.O. Batista, R. Seara, D. R. Morgan, A Novel Approach for Beamforming Based on Adaptive Combinations of Vector Projections, Digital Signal Processing, 97 (2020).
  25. M. S. slam, T. Jessy, M. S. Hassan, K. Mondal, T. Rahman, (2016) Suitable Beamforming Technique for 5G Wireless Communications, In 2016 International Conference on Computing, Communication and Automation (ICCCA), IEEE, 1554-1559.
  26. P.S.M. Tripathi, Ramjee Prasad, Spectrum for 5G Services, Wireles Pers Communincation, 100 (2018) 539–555.