Abstract

Where is the abrasive or gradual removal of materials at solid surfaces? It is caused due to the interaction between the sliding surface by mechanical action. The abrasive wears can be recognised as scratches or grooves. To enhance the wear resistance suitable nanocoating is applied on the material surface for better tribological properties such as hardness and toughness. Wear resistant nanocoating is used to reduce or eradicate wear to extend the lifetime of the EN8 steel. EN8 is unalloyed medium carbon steel with better mechanical properties than mild steel and also readily machinable in any condition. The nanocoating materials such as Al2O3, TiO2, SiC, ZrO2, WS2, Si3N4 etc., are used to reduce wear and to enhance hardness and toughness on mild steel through various nanocoating techniques. This paper deals with selection of suitable nanocoating material through AHP (Analytical hierarchal process) - a multi-criteria decision-making method.

Keywords

Wear, Nanocoating, EN8 steel, AHP,

Downloads

Download data is not yet available.

References

  1. Khan, I., Saeed, K., & Khan, I. (2017).”Nanoparticles: Properties, applications and toxicities”.Arabian Journal of Chemistry.
  2. Liu, Z., Kiessling, F., &Gätjens, J. (2010). “Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications”.Journal of Nanomaterials,2010, 51.
  3. Caruso, R. A., &Antonietti, M. (2001). Sol− gel nanocoating: an approach to the preparation of structured materials.Chemistry of materials,13(10), 3272-3282.
  4. N.B.Dahotre, S. Nayak. Nanocoatings for engine application, Surf. Coat. Tech. 194 (2005) 58–67
  5. W.F. Cui, G.W. Qin, J.Z. Duan, et al. A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility, Mater. Sci. Eng. C 71 (2017) 520–528
  6. L. Wang, X.G. Chen, D.R. Yan, et al. Structure and properties of nanostructured Fe(AlCr)2O4–Cr–(AlCr)2O3–Fe composite coating prepared by plasma spraying, Ceram. Inter. 41 (2015) 9801–9805
  7. S.C.Tjong, H. Chen. Nanocrystalline materials and coatings, Mater. Sci. Eng. R 45 (2004) 1–88
  8. Brinckmann, S., Fink, C. A., &Dehm, G. (2015). Nanotribology in austenite: Normal force dependence.Wear,338, 430-435.
  9. Sidky PS, Hocking MG (1999) “Review of inorganic coatings and coating processes for reducing wear and corrosion”. CorrosEng Sci Technol 34:171–
  10. Hari Krishnan K, John S, Srinivasan KN, Praveen J, Ganesan M, Kavimani PM (2006) An overall aspect of electroless Ni–Pdepositions: a review article. Metall Mater Trans A 37A: 1917–1926
  11. Makkar, P., Agarwala, R. C., &Agarwala, V. (2015). Wear and corrosion characteristics of alumina dispersed Ni–P nanocomposite coating developed by electroless technique.Journal of materials science,50(7), 2813-2823.
  12. S. Cho, K. Takagi, H. Kwon et al., “Multi-walled carbon nanotube-rein forced copper nano composite coating fabricated by low-pressure cold spray process,” Surface and Coatings Technology, vol.206,no.16,pp.3488–3494,2012.
  13. J. S. Kim, Y. S. Kwon, O. I. Lomovsky et al., “Cold spraying of insituproducedTiB2-Cunanocompositepowders,”Composites ScienceandTechnology,vol.67, no.11-12, pp.2292–2296,2007.
  14. D. J. Woo, B. Sneed, F. Peerally et al., “Synthesis of nanodiamond-reinforcedaluminium metalcompositepowders and coatings using high-energy ball milling and cold spray,” Carbon,vol.63, pp.404–415,2013.
  15. N. Sanpo, Saraswati, T. M. Lu, and P. Cheang, “Anti-bacterial property of cold sprayed ZnO-Al coating,” in Proceedings of the BioMedical Engineering and Informatics: New Development and the Future -1st International Conference on BioMedical Engineering and Informatics, BMEI 2008, pp. 488–491, China, May2008.
  16. C.-J.Li, G.-J.Yang, P.-H.Gao, J.Ma, Y.-Y.Wangand C.-X.Li, “CharacterizationofnanostructuredWC-Codepositedbycoldspraying,”JournalofThermalSprayTechnology, vol.16,no.5-6, pp.1011–1020,2007.
  17. X.-T.Luoand C.-J.Li, “Ther malstability of micro structure and hard ness of cold-sprayedBN/NiCrAlnanocompositecoating,” Journal of Thermal Spray Technology, vol. 21, no. 3-4, pp. 578–585,2012.
  18. X.-T. Luo, G.-J. Yang, C.-J. Li, and K. Kondoh, “High strain rate induced localized amorphization in cubic BN/NiCrAl nanocomposite through high velocity impact,” Scripta Materialia, vol.65,no.7,pp.581–584,2011.
  19. X.-T. Luo and C.-J. Li, “Large sized cubic BN reinforced nanocomposite with improved abrasive wear resistance deposited by cold spray,” Materials and Corrosion, vol. 83, pp. 249–256, 2015.
  20. M.Ramazani,F.Ashrafizadeh,andR.Mozaffarinia,“Optimization of composition in Ni(Al)Cr2O3based adaptive nano composite coatings,” Journal of Thermal Spray Technology, vol. 23, no.6,pp.962–974,2014.
  21. O. Ali, R. Ahmed, N. H. Faisal et al., “Influence of Posttreatment on the Microstructural and Tribomechanical Properties of Suspension Thermally Sprayed WC–12wt%CoNano composite Coatings,” TribologyLetters,vol.65, no.2,2017.
  22. C.Wang,Y.Wang,L.Wangetal.,“Nano composite Lanthanum Zirconate Thermal Barrier Coating Deposited by Suspension PlasmaSprayProcess,”JournalofThermalSprayTechnology,vol. 23,no.7,pp.1030–1036,2014.
  23. Nguyen-Tri, P., Nguyen, T. A., Carriere, P., & Ngo Xuan, C. (2018). Nanocomposite coatings: preparation, characterization, properties, and applications.International Journal of Corrosion,2018.
  24. S.W.Banovic, K.Barmak, andA.R.Marder,“Characterization of single and discretely-stepped electro-composite coatings of nickel-alumina,”Journal of Materials Science,vol.34,no.13,pp. 3203–3211,1999.
  25. E. Garc ́ıa-Lecina, I. Garc ́ıa-Urrutia, J. A. D ́ ıez et al., “ElectrochemicalpreparationandcharacterizationofNi/SiCcompositionallygradedmultilayeredcoatings,”ElectrochimicaActa,vol. 54,no.9, pp.2556–2562,2009.
  26. S.A.LajevardiandT.Shahrabi,“Effectsofpulseelectrodeposition parameters on the properties of Ni-TiO2 nanocomposite coatings,” Applied Surface Science, vol. 256, no. 22, pp.6775–6781,2010.
  27. Munteanu, D., Ionescu, C., Olteanu, C., Munteanu, A., Davin, F., Cunha, L., ... &Vaz, F. (2010). Influence of composition and structural properties in the tribological behaviour of magnetron sputtered Ti–Si–C nanostructured thin films, prepared at low temperature.Wear,268(3-4), 552-557.
  28. H. Kim, H. N. Ra, M. Kim, H. G. Kim, and S. S. Kim, “Enhancement of barrier properties by wet coating of epoxyZrP nanocomposites on various inorganic layers,” Progress in Organic Coatings,vol.108, pp.25–29,2017.
  29. S.Pourhashem,M.R.Vaezi,A.Rashidi,andM.R.Bagherzadeh, “Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel,” CorrosionScience,vol.115,pp.78–92,2017.
  30. X. Shi, T. A. Nguyen, Z. Suo, Y. Liu, and R. Avci, “Effect of nanoparticles on the anticorrosion and mechanical properties ofepoxy coating,”Surface&Coatings Technology,vol.204,no. 3, pp.237–245,2009.
  31. T. A. Nguyen, H. Nguyen, T. V. Nguyen, H. Thai, and X. Shi, “Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings,” Journal of Nanoscience and Nanotechnology,vol.16,no.9,pp.9874–9881,2016.
  32. P. P. Vijayan, Y. M. Hany El-Gawady, and M. A. S. A. AlMaadeed, “HalloysiteNanotubeasMultifunctionalComponent in Epoxy Protective Coating,” Industrial & Engineering ChemistryResearch, vol.55, no.42, pp.11186–11192,2016.
  33. J. Yeh, H. Huang, C. Chen, W. Su, and Y. Yu, “Siloxanemodified epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach,” Surface and Coatings Technology, vol. 200,no.8,pp.2753–2763,2006.
  34. A. Davis, Y. H. Yeong, A. Steele, I. S. Bayer, and E. Loth, “Superhydrophobic nanocompositesfacetopographyandice adhesion,”ACSAppliedMaterials&Interfaces,vol.6,no.12, pp. 9272–9279,2014.
  35. L.-P. Sung, J. Comer, A. M. Forster et al., “Scratch behavior of nano-alumina/polyurethane coatings,” Journal of Coatings TechnologyandResearch(JCTR),vol.5,no.4,pp.419–430,2008.
  36. Gupta, R. N., Das, A. K., Nagahanumaiah, &Henal, S. (2016). Pulse electrocodeposited Ni–WC composite coating.Materials and Manufacturing Processes,31(1), 42-47.
  37. U.Bogdanovi ́c,V.Vodnik,M.Mitri ́cetal.,“Nanomaterialwith high antimicrobial efficacy—copper/polyaniline nanocomposite,” ACSAppliedMaterials&Interfaces,vol.7,no.3,pp.1955–1966,2015.
  38. Chang, L.M.; An, M.Z.; Guo, H.F.; Shi, S.Y. Microstructure and properties of Ni-Co=nano Al2O3 composite coatings by pulse reversalcurrent electro deposition. Applied Surface Science 2006, 253, 2132–2137.
  39. Lajevardi, S.A.; Shahrabi, T.; Szpunar, J.A. “Synthesis of functionally graded nano Al2O3–Ni composite coating by pulse electro deposition”. Applied Surface Science 2013, 279, 180–188.
  40. Shah, R.K.; Khan, T.I. “Effect of applied current on0 electrodeposited Ni-Al2O3 composite coatings”. Surface and Coating Technology 2010, 205, 890–895.
  41. Kung-Hsu, H.; Yann-Cheng, C. “Preparation and wear resistance of pulse electrodeposited Ni–W=Al2O3 composite coatings”. Applied Surface Science 2011, 257, 6340–6346.
  42. Arunsunai, K.; Paruthimal, K.G.; Muralidharan, V.S. “Direct and pulse current electro deposition of Ni–W–TiO2 nanocomposite coatings”. Ceramics International 2013, 39, 2827–2834.
  43. Spanou, S.; Kontos, A.I.; Siokou, A.; Kontos, A.G.; Vaenas, N.; Falaras, P.; Pavlatou, E.A. “Self cleaningbehaviour of Ni=nano-TiO2 metal matrix composites”. Electrochimica Acta 2013, 105, 324–332.
  44. Gu ̈l, H.; Kılıc, F.; Uysal, M.; Aslan, S.; Alp, A.; Akbulut, H. “Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electro deposition”. Applied Surface Science 2012, 258, 4260–4267.
  45. Yang, Y.; Cheng, Y.F. “Fabrication of Ni–Co–SiC composite coatings by pulse electro-deposition –effects of duty cycle and pulse frequency”. Surface and Coatings Technology 2013, 216, 282–288.
  46. Yang, Y.; Cheng, Y.F. “Mechanistic aspects of electro deposition of Ni–Co–SiC composite nano-coating on carbon steel”. Electrochimica Acta 2013, 109, 638–644.
  47. Wang, W.; Hou, F.; Guo, H. “Effect of dispersibility of ZrO2 nano particles in Ni-ZrO2 electroplated nano composite coatings on the mechanical properties of nano composite coatings”. Applied surface Science 2006, 252, 3812–3817.
  48. Kanagalasara, V.; Thimmappa, V.V. “Zn–ZrO2 nanocomposite coatings: elecrodeposition and evaluation of corrosion resistance”. Applied Surface Science 2011, 257, 8929–8936.
  49. Garcı ́a-Lecina, E.; Garcı ́a-Urrutia, I.; Dı ́ez, J.A.; Fornell, J.; Pellicer, E.; Sort, J. “Co-deposition of inorganic fullerene-like WS2 nanoparticles in an electrodeposited nickel matrix under the influence of ultrasonic agitation”. Electrochimica Acta 2013, 114, 859–867.
  50. Eslami, M.; Golestani-fard, F.; Saghafian, H.; Alain, R. “Study on tribological behavior of electrodeposited Cu–Si3N4 composite coatings”. Materials & Design 2014, 58, 557–569.
  51. Eslami, M.; Hassan, S.; Farhad, G.; Alain, R. “Effect of electrodeposition conditions on the properties of Cu–Si3N4 composite coatings”. Applied Surface Science 2014, 300, 129–140.
  52. Walsh, F.C.; Low, C.T.J.; Wills, R.G.A. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface and Coating Technology 2006, 201, 371–383
  53. Hou, K. H., & Chen, Y. C. (2011). Preparation and wear resistance of pulse electrodeposited Ni–W/Al2O3 composite coatings.Applied Surface Science,257(15), 6340-6346.