Tamanau (Calophyllum inophyllum L.), has economic value as a source of biofuel and medicine, therefore it has the potential to be developed in several wetlands in Riau, Indonesia. This study aims to examine the growth ability and morphological adaptation of tamanu to flooding conditions on mineral soil, peat soil and sand soil. This experimental research was designed using a randomized block design. The experiment consisted of flooded and non-flooded treatments on mineral soils, peat soils and sandy soils. Flooding was carried out on all types of soil with an inundation level of 2 cm above the soil surface for 30 days. The results showed that Tamanu seedlings are tolerant to flooding on mineral soils and sandy soils, but sensitive to flooding on peat soils. The morphological adaptation of tamanu seedlings to flooding in mineral soils is the formation of adventitious roots and lenticels. Tamanu seedlings when submerged in sandy soil only form pores on submerged stems.


Flooding, Mineral soil, Peat soil, Sand soil, Tamanu (Calophyllum inophyllum L.),


Download data is not yet available.


  1. R. Yusuf, Karakteristik Dan Potensi Pemanfaatan Lahan Gambut Terdegradasi Di Provinsi Riau, Jurnal Tanah dan Sumberdaya Lahan, 8 (1) (2014) 59–66.
  2. J. B. Friday and D. Okano, Calophyllum inophyllum (kamani) Clusiaceae (syn. Guttiferae) (mangosteen family) Species Profiles for Pacific Island Agroforestry www.traditionaltree.org, Doc-Developpement-Durable.Org, no. April (2006).
  3. S. Sundur, B. Shrivastava, P. Sharma, S. S. Raj, and V. L. Jayasekhar, A review article of pharmacological activities and biological importance of Calophyllum inophyllum, International Journal of Advanced Research, 2(12) (2014) 599–603.
  4. V. K. Belagur and V. R. Chitimi, Few physical, chemical and fuel related properties of calophyllum inophyllum linn (honne) oil and its blends with diesel fuel for their use in diesel engine, Fuel, 109 (2013) 356–361.
  5. S. Gupta and P. Gupta, The genus Calophyllum: Review of ethnomedicinal uses, phytochemistry and pharmacology, Bioactive Natural products in Drug Discovery, pp. (2020) 215–242.
  6. H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, and R. S. Norhasyima, Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review, Renewable and Sustainable Energy Reviews, 15(8) (2011) 3501–3515.
  7. Sundur, Silpa, B. Shrivastava, Pankaj Sharma, Solomon Sunder Raj, and Jayasekhar, V.L., A review article of pharmacological activities and biological importance of Calophyllum inophyllum, International Journal of Advanced Research 2(12) (2014): 599-603.
  8. Norsamsi, S. Fatonah, and D. Iriani, Kemampuan Tumbuh Anakan Tumbuhan Nyamplung (Calophyllum inophyllum L.) pada Berbagai Taraf Penggenangan, Biospesies, 8(1) (2015) 20–28.
  9. B. Leksono et al., Tamanu (Calophyllum inophyllum) growth performance on different types of degraded peatlands in Central Kalimantan, IOP Conference Series: Earth and Environmental Science, 914(1) (2021).
  10. B. Leksono et al., Growth performance of Calophyllum inophyllum at a bioenergy trial plot in Bukit Soeharto Research and Education Forest, East Kalimantan, IOP Conference Series: Earth and Environmental Science, 749(1) (2021).
  11. R. C. Bhusal, F. Mizutani, and K. Laban Rutt, Selection of Rootstocks for Flooding and Drought Tolerance in Citrus Species, Pakistan Journal of Biological Sciences, 5(5) (2002) 509–512.
  12. C. Parent, N. Capelli, A. Berger, M. Crèvecoeur, and J. F. Dat, An overview of plant responses to soil waterlogging, Plant Stress, 2 (2008) 20–27.
  13. M. E. Probert and B. A. Keating, What soil constraints should be included in crop and forest models?, Agriculture, Ecosystems & Environment, 82(1–3) (2000) 273–281. 2000,
  14. A. Mustroph, “Improving flooding tolerance of crop plants, Agronomy, 8(9) (2018).
  15. T. T. Kozlowski, Responses of woody plants to flooding and salinity, Tree Physiology, 17(7) (1997) 490–490.
  16. A. Hemantaranjan, Flooding: Abiotic Constraint Limiting Vegetable Productivity, Advances in Plants & Agriculture Research, 1(3) (2014) 1–9.
  17. L. Mommer and E. J. W. Visser, Underwater photosynthesis in flooded terrestrial plants: A matter of leaf plasticity, Annals of Botany, 96(4) (2005) 581–589. 2005.
  18. E. Loreti, H. van Veen, and P. Perata, Plant responses to flooding stress, Current Opinion in Plant Biology, vol. 33, pp. 64–71, 2016.
  19. M. B. McBride, “Cupric Ion Activity in Peat Soil as a Toxicity Indicator for Maize, Journal of Environmental Quality, vol. 30, no. 1, pp. 78–84, 2001.
  20. K. Schwärzel, M. Renger, R. Sauerbrey, and G. Wessolek, Soil physical characteristics of peat soils, Journal of Plant Nutrition and Soil Science, 165(4) (2002) 479–486.
  21. C. J. Riche, Identification of soybean cultivars tolerance to waterlogging through analyses of leaf nitrogen concentration, Master Thesis 36. (2004). https://digitalcommons.lsu.edu/cgi/viewcontent.cgi?article=4724&context=gradschool_theses
  22. C. Kissmann, E. B. da Veiga, M. T. Eichemberg, and G. Habermann, Morphological effects of flooding on Styrax pohlii and the dynamics of physiological responses during flooding and post-flooding conditions, Aquatic Botany, 119 (2014) 7–14.
  23. Z. Liu, R. Cheng, W. Xiao, Q. Guo, and N. Wang, Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense, PLoS One, 9(9) (2014).
  24. M. Amin, M. Karim, M. Islam, S. Aktar, and M. Hossain, Effect of flooding on growth and yield of mungbean genotypes, Bangladesh Journal of Agricultural Research, 41 (1) (2016) 151–162.
  25. C. I. Duarte, E. G. Martinazzo, M. A. Bacarin, and I. G. Colares, Seed germination, growth and chlorophyll a fluorescence in young plants of Allophylus edulis in different periods of flooding, Acta Physiologiae Plantarum, vol. 42(5) (2020).
  26. F. Aldana, P. N. García, and G. Fischer, Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(149) (2014) 393.
  27. P. Taylor, F. Yamamoto, and T. T. Kozlowski, Effect of flooding of soil on growth , stem anatomy , and ethylene production of cryptomeria japonica seedlings Effect of Flooding of Soil on Growth, Stem Anatomy, April( 2008) 37–41.
  28. H. Mergemann and M. Sauter, Ethylene Induces Epidermal Cell Death at the Site of Adventitious Root Emergence in Rice, Plant Physiology, 1, 124, (2000) 609–614.
  29. B. Steffens, J. Wang, and M. Sauter, Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice, Planta, 223(3) (2006) 604–612.
  30. T. Yamauchi, S. Shimamura, M. Nakazono, and T. Mochizuki, Aerenchyma formation in crop species: A review, Field Crops Research, 152 (2013) 8–16.
  31. S. Shimamura, R. Yamamoto, T. Nakamura, S. Shimada, and S. Komatsu, Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil, Annals of Botany, 106 (2) (2010) 277–284.