Nile cabbage (Pistia stratiotes) represents a promising source of biodiesel which has been garnered due to good biomass yield. This study aims to determine the possibility for biodiesel production from Nile cabbage plants collected from a seasonal Pager River. The bio-oil extraction from Nile cabbage leaves was done using soxhlet apparatus. The biodiesel was produced by transesterification of lipids and characterized by GC-FID and the physio-chemical parameters of the produced biodiesel were also performed. The obtained results indicate that, Nile cabbage sample showed a yield of biodiesel (30.30±0.01) %. The biodiesel obtained possess the following fuel properties: density (880.00±0.00)Kg/m3, pH (5.70±0.00), saponification value (137.10±0.09) mg KOH/g, acid value (1.00±0.00) mg KOH/g, iodine value (63.41±0.01) mg I2/100g, flash point (120±0.00)℃, pour point (-6.20±0.03) ℃, colour (brown), moisture content (50.00±0.00)%, and ash content (0.003±0.00)%, and cetane number (49.53±0.05). The GC-FID analysis of the obtained biodiesel showed the presence of C16:0, C18:0, C18:1 and C18:2 as the major constituents of fatty acids (FAs) detected. Therefore, all physiochemical parameters were within the allowable limits, accept only acid value which was slightly higher than the standard limits issued by the American and European (ASTM D 6571:12 and EN 14214:2012) standards. Aquatic weeds are considered a global threat in the aquatic ecosystem, which invoked a lot of attention from the general public and the scientific community. Our findings showed that Nile cabbage biomass could give a significant yield of biodiesel, with desired fuel properties which will initiates a cleaner energy.


Nile Cabbage, Pistia stratiotes, Transesterification, FAME and Biodiesel,


Download data is not yet available.


  1. O.H. Kokole, Kiwanuka, M. Semakula M. Lyons, (2023) Maryinez and Ingham, Kenneth. "Uganda". Encyclopedia Britannica, https://www.britannica.com/place/Uganda
  2. F.N. Nsubuga, E.N. Namutebi, M. Nsubuga-Ssenfuma, Water resources of Uganda: An assessment and review. Journal of Water Resource and Protection, 06 (14) (2014) 1297-1315.
  3. Z. Hoffman, (2021). Land Use as a Predictor of Water Hyacinth (Eichhornia crassipes) Presence on the Entebbe Coast of Lake Victoria, Uganda. Independent Study Project (ISP).
  4. Olesia Havryliuk, Vira Hovorukha, Oleksandr Savitsky, Volodymyr Trilis, Antonina Kalinichenko, Agnieszka Dołha ´nczuk-Srodka, Daniel Janecki, Oleksandr Tashyrev, Anaerobic Degradation of Environmentally Hazardous Aquatic Plant Pistia stratiotes and Soluble Cu(II) Detoxification by Methanogenic Granular Microbial Preparation, Energies, , 14(13) (2021) 3849.
  5. D. E. H. J. Gernaat, H. S. de Boer, V. Daioglou, S. G. Yalew, C. Müller, and D. P. van Vuuren, Climate Change Impacts on Renewable Energy Supply, Natural Climate Change, 11 (2021) 119–125.
  6. H.R. Lu, X.Qu, A.E. Hanandeh, Towards a Better Environment—the Municipal Organic Waste Management in Brisbane: Environmental Life Cycle and Cost Perspective, Journal of Cleaner Production, 258 (10) (2020) 120756.
  7. Gabson Baguma, Andrew Musasizi, Hannington Twinomuhwezi, Allan Gonzaga, Caroline K. Nakiguli, Patrick Onen, Christopher Angiro, Augastine Okwir, Boniface Opio, Thomas Otema, Daniel Ocira, Ivan Byaruhanga, Eric Nirigiyimana, Timothy Omara, Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda, Pollutants, 2 (4) (2022) 407-421.
  8. Ronald Ntuwa, Patrick Onen, Gabson Baguma, Eric Niringiyimana, Ivan Byaruhanga, Thomas Otema Wycliffe Ampaire, Denish Adolfo Ogenrwot, Daniel Ocira, Comparative Analysis of Some Trace Metals in Municipal and Spring Water from Makerere University and Selected Springs in Bunga, Uganda. Asian Journal of Fisheries and Aquatic Research, 18 (6) (2022) 42-47.
  9. R. Halim, H. Kiani, R. Aznar, M.M. Poojary, B.K. Tiwari, Chromatographic techniques to separate and identify bioactive compounds in microalgae, Frontiers in Energy Research, 844 (2022).
  10. R. Schmid, D. Bown, Aroids: Plants of the Arum Family, Taxonomy, 49 (4) (2000) 839-840.
  11. K. Pal, S.K. Kundu, Pharmacological Updates of Pistia Stratiotes (Water Lettuce/Jalakumbhi): A Mini Review, Pharma Tutor, 2 (1) (2014) 21-25.
  12. R. Gusain, S. Suthar, Potential of Aquatic Weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in Biofuel Production, Process Safety and Environmental Protection, 109 (2017) 233–241.
  13. Aviraj Datta, Savitri Maharaj, G. Nagendra Prabhu, Deepayan Bhowmik, Armando Marino, Vahid Akbari, Srikanth Rupavatharam, J. Alice R. P. Sujeetha , Girish Gunjotikar Anantrao, Vidhu Kampurath Poduvattil , Saurav Kumar, Adam Kleczkowski, Monitoring the Spread of Water Hyacinth (Pontederia crassipes): Challenges and Future Developments. Frontiers in Ecology and Evolution, 9 (2021) 1–8.
  14. S. Shayo, S.M. Limbu, Nutrient release from sediments and biological nitrogen fixation: Advancing our understanding of eutrophication sources in Lake Victoria, Tanzania. Lakes and Reservoirs, Research and Management, 28 (40) (2018) 312–323.
  15. C.O. Adetunji, O.T. Olaniyan, O.A. Anani, R.E. Bodunrinde, O.O. Osemwegie, B.E. Ubi, Integrated Processes for Production of Pharmaceutical Products from Agro-Wastes, in Biomass, Biofuels, Biochemicals, (2022) 439–461.
  16. T.V. Fernandes, L.M. Trebuch, R.H. Wijffels, Microalgae-based Technologies for Circular Wastewater Treatment, in Integrated Wastewater Management and Valorization Using Algal Cultures, (2022) 81–112.
  17. UFOP, Report on Global Market Supply 2018/2019, Union zur Förderung von Oel- und Proteinpflanzen. Available online: https://www.ufop.de/files/4815/4695/8891/WEB_UFOP_Report_on_Global_Market_Supply_18-19.pdf
  18. M. Bošnjakovic, N. Sinaga, The Perspective of Large-Scale Production of Algae Biodiesel, Applied Sciences, 10(22) (2020) 8181.
  19. Association of Official Analytical Chemists, & Association of Official Agricultural Chemists (US). (2000). Official methods of analysis.
  20. AOAC, Official Methods of Analysis, 18 ed. (2006) Gaithersburgs, MD: Association of Official Analytical Chemists.
  21. E.M. Sánchez Faba, G.O. Ferrero, J.M. Dias, G.A. Eimer, Alternative Raw Materials to Produce Biodiesel through Alkaline Heterogeneous Catalysis, Catalysts, 9(8) (2019) 690.
  22. Saqib Sohail, Muhammad Waseem Mumtaz, Hamid Mukhtar, Tooba Touqeer, Muhammad Kafeel Anjum, Umer Rashid, Wan Azlina Wan Ab Karim Ghani, Thomas Shean Yaw Choong, Spirogyra oil-based biodiesel: Response surface optimization of chemical and enzymatic transesterification and exhaust emission behavior, Catalysts, 10 (10) (2020) 1214.
  23. M. Aliyu, M.A. Kano, N. Abdullahi, I.A. Kankara, S. I. Ibrahim, Y.Y. Muhammad, Extraction, characterization and fatty acids profiles of Nymphaea Lotus and Nymphaea Pubescens seed oils, Biosciences Biotechnology Research Asia, 14 (4) (2017) 1299-1307.
  24. ISO, (2013) Animal and Vegetable Fats and Oils: Determination of Iodine Value.
  25. Gopinath, S. Puhan, G. Nagarajan, Relating the cetane number of biodiesel fuels to their fatty acid composition: a critical study. Proceedings of the Institution of Mechanical Engineers, Engineering, Part D: Journal of Automobile, 223(4) (2009) 565-583.
  26. S. Tadesse, H. Berhie, B. Kifle, G. Tesfaye, Production and Characterization of Bio-diesel from Water Hyacinth (Eichhorniacrassipes) of Lake Koka, Ethiopia. American Journal of Applied Chemistry, 10 (3) (2022) 62-66.
  27. S. Zhang, L. Zhang, G. Xu, F. Li, X. Li, A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies, Frontiers in Microbiology, 13 (2022).
  28. B.G. ACEA, (2009) European Automobile Manufacturers Association, Brussels, Belgium.
  29. ASTM, (2002) Standard Specification for Biodiesel Fuel (B100) Blend Stock for Distillate Fuels, American Society for Testing and Materials.
  30. G. Singh, C. Jeyaseelan, K.K. Bandyopadhyay, D. Paul, Comparative analysis of biodiesel produced by acidic transesterification of lipid extracted from oleaginous yeast Rhodosporidium toruloides. 3 Biotech, 8 (10) (2018) 434.
  31. H.O. Sharma, Production of biodiesel: Industrial, economic and energy aspects: A review, Plant Archives, 20 (2020) 2058-2066.
  32. G.E. Luo, W. Shi, X. Chen a, Wuzhong Ni, P.J. Strong, Y. Jia, H. Wang, Hydrothermal conversion of water lettuce biomass at 473 or 523 K, Biomass and bioenergy, 35 (12) (2011) 4855-4861.
  33. O.A. Pike, S.O’Keefe, Fat characterization, Food analysis, (2017) 407-429.
  34. F. Qiu, Y. Li, D. Yang, X. Li, P. Sun, Biodiesel production from mixed soybean oil and rapeseed oil, Applied Energy, 88 (6) (2011) 2050-2055.
  35. G. Knothe, "Designer” biodiesel: optimizing fatty ester composition to improve fuel properties, Energy & Fuels, 22 (2) (2008) 1358-1364.
  36. Y. Li, Y.F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, R. Ruan, Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production, Bioresource technology, 102 (8) (2011) 5138-5144.
  37. F. Jafarihaghighi, M. Ardjmand, M. Salar Hassani, M. Mirzajanzadeh, H. Bahrami, Effect of Fatty Acid Profiles and Molecular Structures of Nine New Source of Biodiesel on Combustion and Emission, ACS omega, 5 (26) (2020) 16053–16063.