Abstract

Introduction: Dengue is an arboviral infection, transmitted from person to person via mosquito vectors. Dengue transmission is affected by rainfall, temperature, humidity and wind speed. These climate variables are changing as a result of anthropogenic climate change, and it is expected that this will affect the incidence of dengue. This scoping review explored the impacts on dengue transmission of variation in these climate variables in 12 Asian countries located in South- and South-East Asia regions. Methods: The protocol developed by the Joanna Briggs Institute was followed for this scoping review. Articles were found using the PubMed, Scopus, and Embase databases, as well as grey literature. Studies conducted in India, Bangladesh, Bhutan, the Democratic Republic of Korea, Indonesia, Maldives, Myanmar, Nepal, Thailand, Sri Lanka, and Timor Leste and published in English between 2002 and 2022 were included. An extensive literature search was conducted in February and March, 2022. A modified checklist designed for assessing the quality of ecological studies was used to assess the quality. Following quality assessment, ninety articles were included in the review. Results: The initial search yielded 1912 articles. After the duplicates were removed, 983 were identified as potentially relevant. Following the exclusion of 729 articles by two reviewers, 254 articles were subjected to full text screening. Thereafter, 90 articles were selected for the review that strictly met the inclusion criteria. Although the results were mixed, we found that dengue transmission decreases in temperature extremes. Dengue transmission increases with heavy rainfall, with a 1- 3-month lag. Humidity was also found to be related to dengue transmission. Other factors found to be associated with dengue transmission include the hours of sunshine and wind speed. Conclusion: There is a complex relationship between changing climate parameters and dengue incidence in Asia. This reflects the complex ecology of vector-borne diseases and suggests that the impact of changes in climate variables on dengue transmission may vary according to local climate and other factors.

Keywords

Dengue, Climate Change, Asia, Scoping Review,

Metrics

Metrics Loading ...

References

  1. Acharya, B.K., Cao, C., Xu, M., Khanal, L., Naeem, S., & Pandit, S. (2018). Temporal variations and associated remotely sensed environmental variables of dengue fever in Chitwan District, Nepal. ISPRS International Journal of Geo-Information, 7(7), 275. https://doi.org/10.3390/ijgi7070275
  2. Ahmed, S.A., & Siddiqui, J.S. (2014). Principal component analysis to explore climatic variability and dengue outbreak in Lahore. Pakistan Journal of Statistics and Operation Research, 10(2), 247-256. https://doi.org/10.18187/pjsor.v10i2.686
  3. Ajim Ali, S., & Ahmad, A. (2018). Using analytic hierarchy process with GIS for Dengue risk mapping in Kolkata Municipal Corporation, West Bengal, India. Spatial Information Research, 26(4), 449-469. https://doi.org/10.1007/s41324-018-0187-x
  4. Ali, K., & Ma'Rufi, I. (2018). The relationship between rainfall and dengue hemorrhagic fever incidence during 2009-2013 (Case study at Grati and Tutur Sub-district, Pasuruan, Indonesia). Paper presented at the 3rd International Conference on Climate Change, ICCC 2018. https://doi.org/10.1088/1755-1315/200/1/012031
  5. Ali, K., Ma'rufi, I., Wiranto, & Fuad, A. (2020). Variability of Local Weather as Early Warning for Dengue Hemorrhagic Fever Outbreak in Indonesia. Paper presented at the 10th International Conference on Bioscience, Biochemistry and Bioinformatics, ICBBB 2020. https://doi.org/10.1145/3386052.3386078
  6. Anno, S., Imaoka, K., Tadono, T., Igarashi, T., Sivaganesh, S., Kannathasan, S., Surendran, S. N. (2014). Characterization of the temporal and spatial dynamics of the dengue epidemic in northern Sri Lanka. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives), 8 163–166. https://doi.org/10.5194/isprsarchives-XL-8-163-2014
  7. Anwar, A., Khan, N., Ayub, M., Nawaz, F., Shah, A., & Flahault, A. (2019). Modeling and predicting dengue incidence in highly vulnerable countries using panel data approach. International Journal of Environmental Research and Public Health, 16(13), 2296. https://doi.org/10.3390/ijerph16132296
  8. Arcari, P., & Tapper, N. (2017). The variable impact of ENSO events on regional dengue/DHF in Indonesia. Singapore Journal of Tropical Geography, 38(1), 5-24. https://doi.org/10.1111/sjtg.12179
  9. Arcari, P., Tapper, N., & Pfueller, S. (2007). Regional variability in relationships between climate and dengue/DHF in Indonesia. Singapore Journal of Tropical Geography, 28(3), 251-272. https://doi.org/10.1111/j.1467-9493.2007.00300.x
  10. Arsin, A. A., Istiqamah, S. N. A., Elisafitri, R., Nurdin, M. A., Sirajuddin, S., Pulubuhu, D. A. T., . . . Yani, A. (2020). Correlational study of climate factor, mobility and the incidence of Dengue Hemorrhagic Fever in Kendari, Indonesia. Enfermeria Clinica, 30, 280-284. https://doi.org/10.1016/j.enfcli.2020.06.064
  11. Baig, H. Z., & Nawaz, A. J. (2012). Climatic factors affecting dengue fever incidence in Lahore, Pakistan. Dengue Bulletin, 36, 64.
  12. Barrera, R., Amador, M., & MacKay, A. J. (2011). Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico. PLoS Neglected Tropical Diseases, 5(12), e1378. https://doi.org/10.1371/journal.pntd.0001378
  13. Benedum, C.M., Seidahmed, O.M., Eltahir, E.A., & Markuzon, N. (2018). Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Neglected Tropical Diseases, 12(12), e0006935. https://doi.org/10.1371/journal.pntd.0006935
  14. Campbell, K.M. (2014). The complex relationship between weather and dengue virus transmission in Thailand and Peru. American Journal of Tropical Medicine and Hygiene, 91(5), 29-430.
  15. Carrington, L.B., Seifert, S.N., Willits, N.H., Lambrechts, L., & Scott, T.W. (2013). Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. Journal of Medical Entomology, 50(1), 43-51. https://doi.org/10.1603/ME11242
  16. Center for Disease Control and Prevention. (2021). Dengue. Retrieved from https://www.cdc.gov/dengue/index.html
  17. Chaiphongpachara, T., Pimsuka, S., Na Ayudhaya, W. S., & Wassanasompong, W. (2017). The application of geographic information system in dengue haemorrhagic fever risk assessment in samut Songkhram province, Thailand. International Journal of GEOMATE, 12(30), 53-60. https://doi.org/10.21660/2017.30.160601
  18. Chandra, G., & Mukherjee, D. (2022). Chapter 35 - Effect of climate change on mosquito population and changing pattern of some diseases transmitted by them. Advances in Animal Experimentation and Modeling, 455-460. https://doi.org/10.1016/B978-0-323-90583-1.00030-1
  19. Chandran, R., & Azeez, P.A. (2015). Outbreak of dengue in Tamil Nadu, India. Current Science, 109(1), 171-176.
  20. Channa, M.A., & Memon, N. (2020). Seasonal variation in the prevalence of larvae of Aedes aegypti mosquito in district Hyderabad, Sindh, Pakistan. Pesquisa Agropecuaria Brasileira, 9(2), 1354-1363. http://dx.doi.org/10.19045/bspab.2020.90142
  21. Costa, E.A.P.d.A., Santos, E.M., Correia, J.C., & Albuquerque, C.M.R.d. (2010). Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Revista Brasileira De Entomologia, 54, 488-493. https://doi.org/10.1590/S0085-56262010000300021
  22. De Garín, A. B., Bejarán, R.A., Carbajo, A.E., De Casas, S.C., Schweigmann, N.J. (2000). Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability. International Journal of Biometeorology, 44(3), 148-156. https://doi.org/10.1007/s004840000051
  23. Dhimal, M., Gautam, I., Joshi, H. D., O’Hara, R. B., Ahrens, B., & Kuch, U. (2015). Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes albopictus), Their Altitudinal Distribution and Climatic Determinants of Their Abundance in Central Nepal. PLoS Neglected Tropical Diseases, 9(3). https://doi.org/10.1371/journal.pntd.0003545
  24. Dufault, B., & Klar, N. (2011). The Quality of Modern Cross-Sectional Ecologic Studies: A Bibliometric Review. American Journal of Epidemiology, 174(10), 1101-1107. https://doi.org/10.1093/aje/kwr241
  25. Dutta, S., Jagtap, M., Balasubramaniam, R., Kulkarni, N., Danish, M., Deshpande, S., Satpute, U., Wayal, R., Bhagbat, P., Nambier, B., Kulkarni, D., Bile, L., Kamble, P.V., Ghosh, K., Sawaisarje, G.K., Khedikar, S., Patil, C., Sahai, A.K., Alam, O. (2021). A pilot study on assessing the effect of climate on the incidence of vector borne disease at pune and pimpri-chinchwad area, maharashtra. Mausam, 72(2), 399-414. https://doi.org/10.54302/mausam.v72i2.611
  26. Ehelepola, N., & Ariyaratne, K. (2015). The interrelationship between dengue incidence and diurnal ranges of temperature and humidity in a Sri Lankan city and its potential applications. Global Health Action, 8(1). https://doi.org/10.3402/gha.v8.29359
  27. Ehelepola, N.D., & Ariyaratne, K. (2015). The interrelationship between dengue incidence and diurnal ranges of temperature and humidity in a Sri Lankan city and its potential applications. Glob Health Action, 8, 29359. https://doi.org/10.1186/s40249-015-0075-8
  28. Ehelepola, N. D., Ariyaratne, K., Buddhadasa, W. M., Ratnayake, S., & Wickramasinghe, M. (2015). A study of the correlation between dengue and weather in Kandy City, Sri Lanka (2003 -2012) and lessons learned. Infectious Diseases of Poverty. https://doi.org/10.1186/s40249-015-0075-8
  29. Fareed, N., Ghaffar, A., & Malik, T.S. (2016). Spatio-temporal extension and spatial analyses of dengue from Rawalpindi, Islamabad and Swat during 2010-2014. Climate, 4(2), 23. https://doi.org/10.3390/cli4020023
  30. Garjito, T. A., Hidajat, M. C., Kinansi, R. R., Setyaningsih, R., Anggraeni, Y. M., Mujiyanto, Trapsilowati, W., Jastal, Ristiyanto, Satoto, T.B.T., Gavotte, L., Manguin, S., Frutos, R. (2020). Stegomyia Indices and Risk of Dengue Transmission: A Lack of Correlation. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00328
  31. Goto, K., Kumarendran, B., Mettananda, S., Gunasekara, D., Fujii, Y., & Kaneko, S. (2013). Analysis of effects of meteorological factors on dengue incidence in Sri Lanka using time series data. PLoS One, 8(5), e63717. https://doi.org/10.1371/journal.pone.0063717
  32. Gubler, D.J. (2011). Dengue, Urbanization and Globalization: The Unholy Trinity of the 21 Century. Tropical Medicine and Health, 39, S3-S11. https://doi.org/10.2149/tmh.2011-S05
  33. Harumy, T.H.F., & Ginting, D.S.B. (2021). Neural Network Enhancement Forecast of Dengue Fever Outbreaks in Coastal Region. Paper presented at the 5th International Conference on Computing and Applied Informatics, ICCAI 2020. https://doi.org/10.1088/1742-6596/1898/1/012027
  34. Haryanto, B. (2016) Health adaptation scenario and dengue fever vulnerability assessment in Indonesia. Advances in Asian Human-Environmental Research, Springer International Publishing, 221-236. https://doi.org/10.1007/978-3-319-23684-1_13
  35. Higa, Y. (2011). Dengue Vectors and their Spatial Distribution. BMC Tropical Medicine and health, 39(4) 17-27. https://doi.org/10.2149/tmh.2011-S04
  36. Husnina, Z., Clements, A. C. A., & Wangdi, K. (2019). Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006–2016: a spatiotemporal analysis. Tropical Medicine and International Health, 24(7), 888-898. https://doi.org/10.1111/tmi.13248
  37. Intergovernmental panel on Climate Change. (2022). Climate Change 2021: The Physical Science Basis.
  38. IOP Conference Series: Earth and Environmental Science. (2018). Paper presented at the 1st International Conference on Tropical Medicine and Infectious Diseases, ICTROMI 2017, in conjunction with the 23rd National Congress of the Indonesian Society of Tropical and Infectious Diseases Consultant, ISTIC 2017 and the 18th Annual Meeting of Internal Medicine Department, Faculty of Medicine, Universitas Sumatera.
  39. Ishak, N.I., & Kasman, K. (2018). The effect of climate factors for dengue hemorrhagic fever in Banjarmasin City, South Kalimantan Province, Indonesia, 2012-2016. Public Health of Indonesia, 4(3), 121. https://doi.org/10.36685/phi.v4i3.181
  40. Islam, S., Emdad Haque, C., Hossain, S., & Hanesiak, J. (2021). Climate variability, dengue vector abundance and dengue fever cases in dhaka, bangladesh: A time-series study. Atmosphere, 12(7). 905. https://doi.org/10.3390/atmos12070905
  41. Jat, M.K., & Mala, S. (2017). Application of GIS and space-time scan statistic for vector born disease clustering. Paper presented at the 10th International Conference on Theory and Practice of Electronic Governance, ICEGOV 2017, 329-338. https://doi.org/10.1145/3047273.3047361
  42. Jaya, I.G.N.M., & Folmer, H. (2021). Identifying Spatiotemporal Clusters by Means of Agglomerative Hierarchical Clustering and Bayesian Regression Analysis with Spatiotemporally Varying Coefficients: Methodology and Application to Dengue Disease in Bandung, Indonesia. Geographical Analysis, 53(4), 767-817. https://doi.org/10.1111/gean.12264
  43. Joshua, V., Kaliaperumal, K., Krishnamurthy, K. B., Muthusamy, R., Venkatachalam, R., Gowri, K. A., Shete, V.C., RamasamyMurhekar, S., Gupta, N., Murhekar, M.V. (2020). Exploration of population ecological factors related to the spatial heterogeneity of dengue fever cases diagnosed through a national network of laboratories in India, 2017. Indian Journal of Medical Research, 151(1), 79-86. https://doi.org/10.4103%2Fijmr.IJMR_1096_18
  44. Khairunisa, U., Wahyuningsih, N.E., Suhartono, & Hapsari. (2018). Impact of Climate on the incidence of Dengue Haemorrhagic fever in Semarang City. Paper presented at the 7th International Seminar on New Paradigm and Innovation on Natural Sciences and Its Application, ISNPINSA 2017. https://doi.org/10.1088/1742-6596/1025/1/012079
  45. Khalid, B., Bueh, C., & Ghaffar, A. (2021). Assessing the Factors of Dengue Transmission in Urban Environments of Pakistan. Atmosphere, 12(6), 773. https://doi.org/10.3390/atmos12060773
  46. Khan, S.Y., Tahir, H.M., Ahsan, M.M., Malik, H.T., & Butt, A. (2014). Estimation of adult density of aedes albopictus (Diptera: Culicidae) in some hilly areas of Pakistan. Pakistan Journal of Zoology, 46(2), 567-570.
  47. Lambrechts, L., Paaijmans, K.P., Fansiri, T., Carrington L.B., Kramer, L.D., Thomas, M.B., & Scott, T.W. (2011). Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. roceedings of the National Academy of Sciences of the United States of America, 108, 7460 - 7465. https://doi.org/10.1073/pnas.1101377108
  48. Liu, Z., Zhang, Z., Lai, Z., Zhou, T., Jia, Z., Gu, J., Wu, K., Chen, X.G. (2017). Temperature Increase Enhances Aedes albopictus Competence to Transmit Dengue Virus. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02337
  49. Lowe, R., Cazelles, B., Paul, R., & Rodó, X. (2016). Quantifying the added value of climate information in a spatio-temporal dengue model. Stochastic Environmental Research and Risk Assessment, 30(8), 2067-2078. https://doi.org/10.1007/s00477-015-1053-1
  50. Maulana, M.R., Yudhastuti, R., Lusno, M.F.D., Mirasa, Y.A., Haksama, S., & Husnina, Z. (2021). Dengue fever distribution, climate and visitors: A study from badung District of Bali, Indonesia. International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2022.2065249
  51. Minarti, M., Anwar, C., Irfannuddin, I., Irsan, C., Amin, R., & Ghiffari, A. (2021). Impact of climate variability and incidence on dengue hemorrhagic fever in palembang city, south sumatra, indonesia. Open Access Macedonian Journal of Medical Sciences, 9, 952-958. https://doi.org/10.3889/oamjms.2021.6853
  52. Mourad Ouzzani, H.H., Zbys Fedorowicz, Ahmed Elmagarmid. (2016). Rayyan — a web and mobile app for systematic reviews. Systematic Reviews, https://doi.org/10.1186/s13643-016-0384-4
  53. Mukhtar, M.U., Mukhtar, M., Iqbal, N., Nawaz, Z., Bhatti, A., Haq, F., Arslan, A., Rashid, M. (2021). The emergence of Dengue Fever in Sheikhupura, Pakistan: Its seroprevalence and risk factors assessment during 2014-2017. Journal of Infection in Developing Countries, 15(9), 1351-1355. https://doi.org/10.3855/jidc.13976
  54. Muurlink, O.T., Stephenson, P., Islam, M.Z., & Taylor-Robinson, A. W. (2018). Long-term predictors of dengue outbreaks in Bangladesh: A data mining approach. Infectious Disease Modelling, 3, 322-330. https://doi.org/10.1016/j.idm.2018.11.004
  55. Nair, D.G., & Aravind, N.P. (2020). Association between rainfall and the prevalence of clinical cases of dengue in Thiruvananthapuram district, India. Internation Journal of Mosquito Research, 46-50. https://doi.org/10.22271/23487941.2020.v7.i6a.488
  56. Nasir, S., Asrar, M., Rasul, A., Hussain, S. M., Aslam, N., Ahmed, F., Yousaf, I., Ashraf, F., Debboun, M. (2018). Potential impact of global warming on population dynamics of dengue mosquito, aedes albopictus skuse (Diptera; culicidae). Pakistan Journal of Agricultural Sciences, 55(4), 889-895.
  57. Netrananda, S., & Mani, M.M. (2021). Ramification of global and local climatic variability on resurgent cases of dengue in delhi, india. Disaster Advances, 14(7), 32-41. https://doi.org/10.25303/147da3221
  58. Noppradit, P., Pradit, S., Muenhor, D., Doungsuwan, N., Whangsani, U., Sama, N., & Towatana, P. (2021). Investigation of 37 years weather record and its relation to human health: A case study in Songkhla Province, Southern Thailand. International Journal of Agricultural Technology, 17(4), 1507-1520.
  59. OECD. (2018). Reproductive biology of the mosquito Ae. Aegypti, in Safety Assessment of Transgenic Organisms in the Environment, Paris: OECD publishing.
  60. Osuolale, O. A.O. (2023). Precursor to Dengue: Projecting Effects of Climate Change on Mosquito Density in Southeast Asia. Environmental Health Perspectives, 131(3), 1552-9924. https://doi.org/10.1289/EHP12772
  61. Ouattara, C. A., Traore, T. I., Traore, S., Sangare, I., Meda, C. Z., & Savadogo, L. G. B. (2022). Climate factors and dengue fever in Burkina Faso from 2017 to 2019. Journal of public health in Africa, 13(1). https://doi.org/10.4081/jphia.2022.2145
  62. Pandey, N., Nagar, R., Gupta, S., Khan, D., Singh, D. D., Mishra, G., Prakash, S., Singh, K.P., Singh M., Jain, A. (2012). Trend of dengue virus infection at Lucknow, north India (2008- 2010): a hospital based study. Indian Journal of Medical Research, 136(5), 862-867.
  63. Paul, K.K., Dhar-Chowdhury, P., Haque, C. E., Al-Amin, H. M., Goswami, D. R., Kafi, M.A.H., Michael A.D., L. Robbin L., Gias U.A., Brooks, W.A. (2018). Risk factors for the presence of dengue vector mosquitoes, and determinants of their prevalence and larval site selection in Dhaka, Bangladesh. PLoS One, 13(6), e0199457. https://doi.org/10.1371/journal.pone.0199457
  64. Peña-García, V.H., Triana-Chávez, O., & Arboleda-Sánchez, S. (2017). Estimating Effects of Temperature on Dengue Transmission in Colombian Cities. Annals of Global Health, 83(3), 509-518. http://doi.org/10.1016/j.aogh.2017.10.011
  65. Pichainarong, N., Mongkalangoon, N., Kalayanarooj, S., & Chaveepojnkamjorn, W. (2006). Relationship between body size and severity of dengue hemorrhagic fever among children aged 0-14 years. Southeast Asian J Trop Med Public Health, 37(2), 283-288.
  66. Polwiang, S. (2016). The correlation of climate factors on dengue transmission in urban area: Bangkok and Singapore cases. PeerJ Preprints, 4, e2322v2321.
  67. Qureshi, E.M.A., Tabinda, A.B., & Vehra, S. (2017). The distribution of Aedes aegypti (Diptera, culicidae) in eight selected parks of Lahore, using oviposition traps during rainy season. Journal of the Pakistan Medical Association, 67(10), 1493-1497.
  68. Rahman, K.M., Sharker, Y., Rumi, R.A., Khan, M.I., Shomik, M.S., Rahman, M.W., Billah Sk M., Rahman, M., Streatfield, P.K., Harley, D., Luby, S.P. (2020). An Association between Rainy Days with Clinical Dengue Fever in Dhaka, Bangladesh: Findings from a Hospital Based Study. International Journal of Environmental Research and Public Health, 17(24). https://doi.org/10.3390/ijerph17249506
  69. Rahman, M., Ekalaksananan, T., Zafar, S., Poolphol, P., Shipin, O., Haque, U., Paul, R., Rocklov J., Pientong C., Overgaard, H.J. (2021). Ecological, social, and other environmental determinants of dengue vector abundance in urban and rural areas of northeastern Thailand. International Journal of Environmental Research and Public Health, 18(11), 5971. https://doi.org/10.3390/ijerph18115971
  70. Rahman, S.A., Rahim, A., & Mallongi, A. (2018). Risk analysis of dengue fever occurrence in bone province sulawesi south using temporal spatial geostatistical model. Indian Journal of Public Health Research and Development, 9(4), 221-226. https://doi.org/10.5958/0976-5506.2018.00287.5
  71. Ratnasari, A., Jabal, A. R., Rahma, N., Rahmi, S. N., Karmila, M., & Wahid, I. (2020). The ecology of aedes aegypti and aedes albopictus larvae habitat in coastal areas of South Sulawesi, Indonesia. Biodiversitas, 21(10), 4648-4654. https://doi.org/10.13057/biodiv/d211025
  72. Riyanto, I.A., Susianti, N.A., Sholihah, R.A., Pradipta Rizki, R.L., Cahyadi, A., Naufal, M., Ramadhan, F., Ramadan. V.K., Risky, A.S. (2020). The spatiotemporal analysis of dengue fever in Purwosari district, Gunungkidul Regency, Indonesia. Indonesian Journal of Geography, 52(1), 80-91. https://doi.org/10.22146/ijg.49366
  73. Roy, M.P., Gupta, R., Chopra, N., Meena, S.K., & Aggarwal, K.C. (2018). Seasonal Variation and Dengue Burden in Paediatric Patients in New Delhi. Journal of Tropical Pediatrics, 64(4), 336-341. https://doi.org/10.1093/tropej/fmx077
  74. Rueda, L.M., Patel, K., Axtell, R.C., & Stinner, R.E. (1990). Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 27, 892 - 898. https://doi.org/10.1093/jmedent/27.5.892
  75. Rusli, Y., & Yushananta, P. (2020). Climate variability and dengue hemorrhagic fever in Bandar Lampung, Lampung Province, Indonesia. International Journal of Innovation, Creativity and Change, 13(2), 323-336.
  76. Sahay, S. (2018). Climatic variability and dengue risk in urban environment of Delhi (India). Urban Climate, 24, 863-874. https://doi.org/10.1016/j.uclim.2017.10.008
  77. Salam, N. (2018). Analysis of the Effects of Rainfall on Dengue Incidence in the City of Delhi, India. International Journal of Medical Research & Health Sciences, 7(12), 149-155. https://doi.org/10.1101/423517
  78. Salamah, M., Kuswanto, H., & Yussanti, N. (2012). On the influence of climate and socio-economic condition to the dengue incidences: A semiparametric panel regression approach. American Journal of Environmental Sciences, 8(6), 661-667. https://doi.org/10.3844/ajessp.2012.661.667
  79. Salim, M.F., & Syairaji, M. (2020). Time-Series Analysis of Climate Change Effect on Increasing of Dengue Hemorrhagic Fever (DHF) Case with Geographic Information System Approach in Yogyakarta, Indonesia. International Proceedings The 2nd ISMoHIM 2020.
  80. Scott, T.W., Morrison, A.C., Lorenz, L.H., L Clark, G.G., Strickman, D., Kittayapong, P., Zhou, H., & Edman, J.D. (2000). Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. Journal of Medical Entomology, 37, 77-88. https://doi.org/10.1603/0022-2585-37.1.77
  81. Seah, A., Aik, J., Ng, L.C., & Tam, C.C. (2021). The effects of maximum ambient temperature and heatwaves on dengue infections in the tropical city-state of Singapore – A time series analysis. Science of the Total Environment, 775. https://doi.org/10.1016/j.scitotenv.2021.145117
  82. Shashvat, K., Basu, R., & Bhondekar, A. P. (2021). Application of time series methods for dengue cases in North India (Chandigarh). Journal of Public Health (Germany), 29(2), 433-441. https://doi.org/10.1007/s10389-019-01136-7
  83. Silva, F.D., dos Santos, A.M., Corrêa Rda, G., & Caldas Ade, J. (2016). Temporal relationship between rainfall, temperature and occurrence of dengue cases in São Luís, Maranhão, Brazil. Ciencia & saude coletiva, 21, 641-646. https://doi.org/10.1590/1413-81232015212.09592015
  84. Sriklin, T., Kajornkasirat, S., & Puttinaovarat, S. (2021). Dengue transmission mapping with weather-based predictive model in three southernmost provinces of thailand. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126754
  85. Sripugdee, S., Inmoung, Y., & Junggoth, R. (2010). Impact of climate change on dengue hemorrhagic fever epidemics. Research Journal of Applied Sciences, 5(4), 260-262. https://doi.org/10.3923/rjasci.2010.260.262
  86. Supadmi, W., Perwitasari, D.A., Abdulah, R., & Suwantika, A.A. (2019). Correlation of rainfall and socio-economic with incidence dengue in Jakarta, Indonesia. Journal of Advanced Pharmacy Education and Research, 9(1), 134-142.
  87. The EndNote Team. (2013). EndNote (Version EndNote 20) [64 bit]. Clavirate, Philadelphia.
  88. The Joanna Briggs Institute. (2015). The Joanna Briggs Institute. Joanna Briggs Institute.
  89. Tosepu, R., Tantrakarnapa, K., Worakhunpiset, S., & Nakhapakorn, K. (2018). Climatic factors influencing dengue hemorrhagic fever in Kolaka district, Indonesia. Environment and Natural Resources Journal, 16(2), 1-10.
  90. United States Environmental Protection Agency. (2022, 2022, August 1st). Climate change indicators.
  91. Watts, D.M., Burke, D.S., Harrison, B.A., Whitmire, R.E., & Nisalak, A. (1987). Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. The American Journal of Tropical Medicine and Hygiene, 36(1), 143-152. https://doi.org/10.4269/ajtmh.1987.36.143
  92. Wijegunawardana, N., Gunawardene, Y., Chandrasena, T., Dassanayake, R.S., Udayanga, N., & Abeyewickreme, W. (2019). Evaluation of the Effects of Aedes Vector Indices and Climatic Factors on Dengue Incidence in Gampaha District, Sri Lanka. BioMed research International, 2019. https://doi.org/10.1155/2019/2950216
  93. Wongkoon, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2012). A forecasting system for dengue fever in Nakhon Si Thammarat, Thailand. International Journal of Infectious Diseases, 16, e365. https://doi.org/10.1016/j.ijid.2012.05.460
  94. Wongkoon, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2013). Distribution, seasonal variation & dengue transmission prediction in Sisaket, Thailand. The Indian Journal of Medical Research, 138(3), 347.
  95. World Health Organization. (2022a). Dengue and severe dengue. World Health Organization.
  96. World Health Organization. (2022b). Dengue in South-East Asia.World Health Organization.
  97. World Meteorological Organizaton. (2022). State of the Global Climate 2021 (WMO - No 1290). World Meteorological Organizaton.
  98. Xu, L., Stige, L.C., Chan, K.S., Zhou, J., Yang, J., Sang, S., Wang, M., Yang, Z., Yan, Z., Jiang, T., Lu. L., Yue, Y., Liu, X., Lin, H., Xu, J., Liu, Q., Stenseth, N.C. (2017). Climate variation drives dengue dynamics. Proceedings of the National Academy of Sciences, 114(1), 113-118. https://doi.org/10.1073/pnas.1618558114
  99. Zahirul Islam, M., Rutherford, S., Phung, D., Uzzaman, M. N., Baum, S., Huda, M. M., Asaduzzaman, M., Talukder, M.R.R., Chu, C. (2018). Correlates of Climate Variability and Dengue Fever in Two Metropolitan Cities in Bangladesh. Cureus, 10(10), e3398. https://doi.org/10.7759/cureus.3398
  100. Zamli, Syafar, M., Palutturi, S., Suriah, Arsin, A. A., Hatta, & Amiruddin, R. (2019). Potential of rainfall, humidity and temperature, against the increasing of larvae in makassar city, Indonesia. International Journal of Innovative Technology and Exploring Engineering, 9(1), 1485-1487. http://doi.org/10.35940/ijitee.A4296.119119